Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
import torch | |
import torch.nn as nn | |
from fairseq.modules.checkpoint_activations import checkpoint_wrapper | |
from torch.utils.checkpoint import checkpoint | |
class Model(nn.Module): | |
def __init__( | |
self, use_pytorch_checkpoint=False, use_fairseq_checkpoint=False, **kwargs | |
): | |
super().__init__() | |
torch.manual_seed(0) | |
self.use_pytorch_checkpoint = use_pytorch_checkpoint | |
self.ffn = nn.Sequential( | |
nn.Linear(32, 128), | |
# add a Dropout layer to test RNG save/restore | |
nn.Dropout(p=0.5), | |
nn.Linear(128, 32), | |
) | |
if use_fairseq_checkpoint: | |
self.ffn = checkpoint_wrapper(self.ffn, **kwargs) | |
self.out = nn.Linear(32, 1) | |
def forward(self, x): | |
if self.use_pytorch_checkpoint: | |
x = checkpoint(self.ffn, x) | |
else: | |
x = self.ffn(x) | |
return self.out(x) | |
class TestActivationCheckpointing(unittest.TestCase): | |
def _test_checkpoint_wrapper(self, device, log_memory_usage=False): | |
def get_loss_and_gnorm(model): | |
torch.manual_seed(1) | |
input = torch.rand(2, 16, 32).requires_grad_(True).to(device) | |
model.zero_grad() | |
loss = model(input).sum() | |
loss.backward() | |
gnorm = torch.norm( | |
torch.stack([torch.norm(p.grad.detach()) for p in model.parameters()]) | |
) | |
return {"loss": loss, "gnorm": gnorm} | |
model = Model().to(device) | |
no_cpt = get_loss_and_gnorm(model) | |
model = Model(use_pytorch_checkpoint=True).to(device) | |
pyt_cpt = get_loss_and_gnorm(model) | |
torch.testing.assert_allclose(no_cpt["loss"], pyt_cpt["loss"]) | |
torch.testing.assert_allclose(no_cpt["gnorm"], pyt_cpt["gnorm"]) | |
model = Model(use_fairseq_checkpoint=True).to(device) | |
fairseq_cpt = get_loss_and_gnorm(model) | |
torch.testing.assert_allclose(no_cpt["loss"], fairseq_cpt["loss"]) | |
torch.testing.assert_allclose(no_cpt["gnorm"], fairseq_cpt["gnorm"]) | |
model = Model(use_fairseq_checkpoint=True, offload_to_cpu=True).to(device) | |
fairseq_cpt_offload = get_loss_and_gnorm(model) | |
torch.testing.assert_allclose(no_cpt["loss"], fairseq_cpt_offload["loss"]) | |
torch.testing.assert_allclose(no_cpt["gnorm"], fairseq_cpt_offload["gnorm"]) | |
def test_checkpoint_wrapper_cpu(self): | |
self._test_checkpoint_wrapper(device=torch.device("cpu")) | |
def test_checkpoint_wrapper_cuda(self): | |
self._test_checkpoint_wrapper(device=torch.device("cuda")) | |
if __name__ == "__main__": | |
unittest.main() | |