Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import logging | |
import os | |
from typing import Callable, Dict, List, Optional, Tuple | |
import torch | |
from torch import Tensor, device, dtype, nn | |
from torch.nn import CrossEntropyLoss | |
from torch.nn import functional as F | |
from .activations import get_activation | |
from .configuration_utils import PretrainedConfig | |
from .file_utils import ( | |
DUMMY_INPUTS, | |
TF2_WEIGHTS_NAME, | |
TF_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
cached_path, | |
hf_bucket_url, | |
is_remote_url, | |
) | |
from .generation_utils import GenerationMixin | |
logger = logging.getLogger(__name__) | |
try: | |
from torch.nn import Identity | |
except ImportError: | |
# Older PyTorch compatibility | |
class Identity(nn.Module): | |
r"""A placeholder identity operator that is argument-insensitive. | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
def forward(self, input): | |
return input | |
def find_pruneable_heads_and_indices( | |
heads: List, n_heads: int, head_size: int, already_pruned_heads: set | |
) -> Tuple[set, "torch.LongTensor"]: | |
mask = torch.ones(n_heads, head_size) | |
heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads | |
for head in heads: | |
# Compute how many pruned heads are before the head and move the index accordingly | |
head = head - sum(1 if h < head else 0 for h in already_pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index: torch.LongTensor = torch.arange(len(mask))[mask].long() | |
return heads, index | |
class ModuleUtilsMixin: | |
""" | |
A few utilities for torch.nn.Modules, to be used as a mixin. | |
""" | |
def num_parameters(self, only_trainable: bool = False) -> int: | |
""" | |
Get number of (optionally, trainable) parameters in the module. | |
""" | |
params = filter(lambda x: x.requires_grad, self.parameters()) if only_trainable else self.parameters() | |
return sum(p.numel() for p in params) | |
def _hook_rss_memory_pre_forward(module, *args, **kwargs): | |
try: | |
import psutil | |
except (ImportError): | |
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") | |
process = psutil.Process(os.getpid()) | |
mem = process.memory_info() | |
module.mem_rss_pre_forward = mem.rss | |
return None | |
def _hook_rss_memory_post_forward(module, *args, **kwargs): | |
try: | |
import psutil | |
except (ImportError): | |
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") | |
process = psutil.Process(os.getpid()) | |
mem = process.memory_info() | |
module.mem_rss_post_forward = mem.rss | |
mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward | |
module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0) | |
return None | |
def add_memory_hooks(self): | |
""" Add a memory hook before and after each sub-module forward pass to record increase in memory consumption. | |
Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero with `model.reset_memory_hooks_state()` | |
""" | |
for module in self.modules(): | |
module.register_forward_pre_hook(self._hook_rss_memory_pre_forward) | |
module.register_forward_hook(self._hook_rss_memory_post_forward) | |
self.reset_memory_hooks_state() | |
def reset_memory_hooks_state(self): | |
for module in self.modules(): | |
module.mem_rss_diff = 0 | |
module.mem_rss_post_forward = 0 | |
module.mem_rss_pre_forward = 0 | |
def device(self) -> device: | |
""" | |
Get torch.device from module, assuming that the whole module has one device. | |
""" | |
try: | |
return next(self.parameters()).device | |
except StopIteration: | |
# For nn.DataParallel compatibility in PyTorch 1.5 | |
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: | |
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
return tuples | |
gen = self._named_members(get_members_fn=find_tensor_attributes) | |
first_tuple = next(gen) | |
return first_tuple[1].device | |
def dtype(self) -> dtype: | |
""" | |
Get torch.dtype from module, assuming that the whole module has one dtype. | |
""" | |
try: | |
return next(self.parameters()).dtype | |
except StopIteration: | |
# For nn.DataParallel compatibility in PyTorch 1.5 | |
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: | |
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
return tuples | |
gen = self._named_members(get_members_fn=find_tensor_attributes) | |
first_tuple = next(gen) | |
return first_tuple[1].dtype | |
def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor: | |
"""type: torch.Tensor -> torch.Tensor""" | |
if encoder_attention_mask.dim() == 3: | |
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] | |
if encoder_attention_mask.dim() == 2: | |
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] | |
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition | |
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow | |
# /transformer/transformer_layers.py#L270 | |
# encoder_extended_attention_mask = (encoder_extended_attention_mask == | |
# encoder_extended_attention_mask.transpose(-1, -2)) | |
encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
if self.dtype == torch.float16: | |
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4 | |
elif self.dtype == torch.float32: | |
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9 | |
else: | |
raise ValueError( | |
"{} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`".format( | |
self.dtype | |
) | |
) | |
return encoder_extended_attention_mask | |
def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple, device: device) -> Tensor: | |
"""Makes broadcastable attention mask and causal mask so that future and maked tokens are ignored. | |
Arguments: | |
attention_mask: torch.Tensor with 1 indicating tokens to ATTEND to | |
input_shape: tuple, shape of input_ids | |
device: torch.Device, usually self.device | |
Returns: | |
torch.Tensor with dtype of attention_mask.dtype | |
""" | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
if attention_mask.dim() == 3: | |
extended_attention_mask = attention_mask[:, None, :, :] | |
elif attention_mask.dim() == 2: | |
# Provided a padding mask of dimensions [batch_size, seq_length] | |
# - if the model is a decoder, apply a causal mask in addition to the padding mask | |
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.is_decoder: | |
batch_size, seq_length = input_shape | |
seq_ids = torch.arange(seq_length, device=device) | |
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] | |
# causal and attention masks must have same type with pytorch version < 1.3 | |
causal_mask = causal_mask.to(attention_mask.dtype) | |
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] | |
else: | |
extended_attention_mask = attention_mask[:, None, None, :] | |
else: | |
raise ValueError( | |
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | |
input_shape, attention_mask.shape | |
) | |
) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
return extended_attention_mask | |
def get_head_mask(self, head_mask: Tensor, num_hidden_layers: int, is_attention_chunked: bool = False) -> Tensor: | |
""" | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
attention_probs has shape bsz x n_heads x N x N | |
Arguments: | |
head_mask: torch.Tensor or None: has shape [num_heads] or [num_hidden_layers x num_heads] | |
num_hidden_layers: int | |
Returns: | |
Tensor of shape shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
or list with [None] for each layer | |
""" | |
if head_mask is not None: | |
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) | |
if is_attention_chunked is True: | |
head_mask = head_mask.unsqueeze(-1) | |
else: | |
head_mask = [None] * num_hidden_layers | |
return head_mask | |
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): | |
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" | |
head_mask = head_mask.to(dtype=self.dtype) # switch to fload if need + fp16 compatibility | |
return head_mask | |
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin): | |
r""" Base class for all models. | |
:class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models | |
as well as a few methods common to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads. | |
Class attributes (overridden by derived classes): | |
- ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture. | |
- ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: | |
- ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`, | |
- ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`, | |
- ``path``: a path (string) to the TensorFlow checkpoint. | |
- ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. | |
""" | |
config_class = None | |
base_model_prefix = "" | |
def dummy_inputs(self): | |
""" Dummy inputs to do a forward pass in the network. | |
Returns: | |
torch.Tensor with dummy inputs | |
""" | |
return {"input_ids": torch.tensor(DUMMY_INPUTS)} | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__() | |
if not isinstance(config, PretrainedConfig): | |
raise ValueError( | |
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " | |
"To create a model from a pretrained model use " | |
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( | |
self.__class__.__name__, self.__class__.__name__ | |
) | |
) | |
# Save config in model | |
self.config = config | |
def base_model(self): | |
return getattr(self, self.base_model_prefix, self) | |
def get_input_embeddings(self): | |
""" | |
Returns the model's input embeddings. | |
Returns: | |
:obj:`nn.Module`: | |
A torch module mapping vocabulary to hidden states. | |
""" | |
base_model = getattr(self, self.base_model_prefix, self) | |
if base_model is not self: | |
return base_model.get_input_embeddings() | |
else: | |
raise NotImplementedError | |
def set_input_embeddings(self, value: nn.Module): | |
""" | |
Set model's input embeddings | |
Args: | |
value (:obj:`nn.Module`): | |
A module mapping vocabulary to hidden states. | |
""" | |
base_model = getattr(self, self.base_model_prefix, self) | |
if base_model is not self: | |
base_model.set_input_embeddings(value) | |
else: | |
raise NotImplementedError | |
def get_output_embeddings(self): | |
""" | |
Returns the model's output embeddings. | |
Returns: | |
:obj:`nn.Module`: | |
A torch module mapping hidden states to vocabulary. | |
""" | |
return None # Overwrite for models with output embeddings | |
def tie_weights(self): | |
""" | |
Tie the weights between the input embeddings and the output embeddings. | |
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning | |
the weights instead. | |
""" | |
output_embeddings = self.get_output_embeddings() | |
if output_embeddings is not None: | |
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) | |
def _tie_or_clone_weights(self, output_embeddings, input_embeddings): | |
""" Tie or clone module weights depending of whether we are using TorchScript or not | |
""" | |
if self.config.torchscript: | |
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) | |
else: | |
output_embeddings.weight = input_embeddings.weight | |
if getattr(output_embeddings, "bias", None) is not None: | |
output_embeddings.bias.data = torch.nn.functional.pad( | |
output_embeddings.bias.data, | |
(0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],), | |
"constant", | |
0, | |
) | |
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): | |
output_embeddings.out_features = input_embeddings.num_embeddings | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None): | |
""" Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. | |
Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. | |
Arguments: | |
new_num_tokens: (`optional`) int: | |
New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. | |
If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model. | |
Return: ``torch.nn.Embeddings`` | |
Pointer to the input tokens Embeddings Module of the model | |
""" | |
base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed | |
model_embeds = base_model._resize_token_embeddings(new_num_tokens) | |
if new_num_tokens is None: | |
return model_embeds | |
# Update base model and current model config | |
self.config.vocab_size = new_num_tokens | |
base_model.vocab_size = new_num_tokens | |
# Tie weights again if needed | |
self.tie_weights() | |
return model_embeds | |
def _resize_token_embeddings(self, new_num_tokens): | |
old_embeddings = self.get_input_embeddings() | |
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
self.set_input_embeddings(new_embeddings) | |
return self.get_input_embeddings() | |
def _get_resized_embeddings( | |
self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None | |
) -> torch.nn.Embedding: | |
""" Build a resized Embedding Module from a provided token Embedding Module. | |
Increasing the size will add newly initialized vectors at the end | |
Reducing the size will remove vectors from the end | |
Args: | |
old_embeddings: ``torch.nn.Embedding`` | |
Old embeddings to be resized. | |
new_num_tokens: (`optional`) int | |
New number of tokens in the embedding matrix. | |
Increasing the size will add newly initialized vectors at the end | |
Reducing the size will remove vectors from the end | |
If not provided or None: return the provided token Embedding Module. | |
Return: ``torch.nn.Embedding`` | |
Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None | |
""" | |
if new_num_tokens is None: | |
return old_embeddings | |
old_num_tokens, old_embedding_dim = old_embeddings.weight.size() | |
if old_num_tokens == new_num_tokens: | |
return old_embeddings | |
# Build new embeddings | |
new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) | |
new_embeddings.to(old_embeddings.weight.device) | |
# initialize all new embeddings (in particular added tokens) | |
self._init_weights(new_embeddings) | |
# Copy token embeddings from the previous weights | |
num_tokens_to_copy = min(old_num_tokens, new_num_tokens) | |
new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] | |
return new_embeddings | |
def init_weights(self): | |
""" Initialize and prunes weights if needed. """ | |
# Initialize weights | |
self.apply(self._init_weights) | |
# Prune heads if needed | |
if self.config.pruned_heads: | |
self.prune_heads(self.config.pruned_heads) | |
# Tie weights if needed | |
self.tie_weights() | |
def prune_heads(self, heads_to_prune: Dict): | |
""" Prunes heads of the base model. | |
Arguments: | |
heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). | |
E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. | |
""" | |
# save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads | |
for layer, heads in heads_to_prune.items(): | |
union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) | |
self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON | |
self.base_model._prune_heads(heads_to_prune) | |
def save_pretrained(self, save_directory): | |
""" Save a model and its configuration file to a directory, so that it | |
can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method. | |
Arguments: | |
save_directory: directory to which to save. | |
""" | |
if os.path.isfile(save_directory): | |
logger.error("Provided path ({}) should be a directory, not a file".format(save_directory)) | |
return | |
os.makedirs(save_directory, exist_ok=True) | |
# Only save the model itself if we are using distributed training | |
model_to_save = self.module if hasattr(self, "module") else self | |
# Attach architecture to the config | |
model_to_save.config.architectures = [model_to_save.__class__.__name__] | |
# If we save using the predefined names, we can load using `from_pretrained` | |
output_model_file = os.path.join(save_directory, WEIGHTS_NAME) | |
if getattr(self.config, "xla_device", False): | |
import torch_xla.core.xla_model as xm | |
if xm.is_master_ordinal(): | |
# Save configuration file | |
model_to_save.config.save_pretrained(save_directory) | |
# xm.save takes care of saving only from master | |
xm.save(model_to_save.state_dict(), output_model_file) | |
else: | |
model_to_save.config.save_pretrained(save_directory) | |
torch.save(model_to_save.state_dict(), output_model_file) | |
logger.info("Model weights saved in {}".format(output_model_file)) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r"""Instantiate a pretrained pytorch model from a pre-trained model configuration. | |
The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated) | |
To train the model, you should first set it back in training mode with ``model.train()`` | |
The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model. | |
It is up to you to train those weights with a downstream fine-tuning task. | |
The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded. | |
Parameters: | |
pretrained_model_name_or_path: either: | |
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. | |
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. | |
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. | |
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
- None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``) | |
model_args: (`optional`) Sequence of positional arguments: | |
All remaning positional arguments will be passed to the underlying model's ``__init__`` method | |
config: (`optional`) one of: | |
- an instance of a class derived from :class:`~transformers.PretrainedConfig`, or | |
- a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()` | |
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: | |
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or | |
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. | |
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. | |
state_dict: (`optional`) dict: | |
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. | |
This option can be used if you want to create a model from a pretrained configuration but load your own weights. | |
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
cache_dir: (`optional`) string: | |
Path to a directory in which a downloaded pre-trained model | |
configuration should be cached if the standard cache should not be used. | |
force_download: (`optional`) boolean, default False: | |
Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
resume_download: (`optional`) boolean, default False: | |
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. | |
proxies: (`optional`) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
The proxies are used on each request. | |
output_loading_info: (`optional`) boolean: | |
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. | |
kwargs: (`optional`) Remaining dictionary of keyword arguments: | |
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: | |
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) | |
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. | |
Examples:: | |
# For example purposes. Not runnable. | |
model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. | |
model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading | |
assert model.config.output_attention == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') | |
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
""" | |
config = kwargs.pop("config", None) | |
state_dict = kwargs.pop("state_dict", None) | |
cache_dir = kwargs.pop("cache_dir", None) | |
from_tf = kwargs.pop("from_tf", False) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
output_loading_info = kwargs.pop("output_loading_info", False) | |
local_files_only = kwargs.pop("local_files_only", False) | |
use_cdn = kwargs.pop("use_cdn", True) | |
# Load config if we don't provide a configuration | |
if not isinstance(config, PretrainedConfig): | |
config_path = config if config is not None else pretrained_model_name_or_path | |
config, model_kwargs = cls.config_class.from_pretrained( | |
config_path, | |
*model_args, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
**kwargs, | |
) | |
else: | |
model_kwargs = kwargs | |
# Load model | |
if pretrained_model_name_or_path is not None: | |
if os.path.isdir(pretrained_model_name_or_path): | |
if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")): | |
# Load from a TF 1.0 checkpoint | |
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") | |
elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): | |
# Load from a TF 2.0 checkpoint | |
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) | |
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): | |
# Load from a PyTorch checkpoint | |
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) | |
else: | |
raise EnvironmentError( | |
"Error no file named {} found in directory {} or `from_tf` set to False".format( | |
[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"], | |
pretrained_model_name_or_path, | |
) | |
) | |
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): | |
archive_file = pretrained_model_name_or_path | |
elif os.path.isfile(pretrained_model_name_or_path + ".index"): | |
assert ( | |
from_tf | |
), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( | |
pretrained_model_name_or_path + ".index" | |
) | |
archive_file = pretrained_model_name_or_path + ".index" | |
else: | |
archive_file = hf_bucket_url( | |
pretrained_model_name_or_path, | |
filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME), | |
use_cdn=use_cdn, | |
) | |
# pytorch_model.bin | |
# https://cdn.huggingface.co/bert-base-uncased-pytorch_model.bin | |
try: | |
# Load from URL or cache if already cached | |
resolved_archive_file = cached_path( | |
archive_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
) | |
if resolved_archive_file is None: | |
raise EnvironmentError | |
except EnvironmentError: | |
msg = ( | |
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" | |
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" | |
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n" | |
) | |
raise EnvironmentError(msg) | |
if resolved_archive_file == archive_file: | |
logger.info("loading weights file {}".format(archive_file)) | |
else: | |
logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) | |
else: | |
resolved_archive_file = None | |
# Instantiate model. | |
model = cls(config, *model_args, **model_kwargs) | |
if state_dict is None and not from_tf: | |
try: | |
state_dict = torch.load(resolved_archive_file, map_location="cpu") | |
except Exception: | |
raise OSError( | |
"Unable to load weights from pytorch checkpoint file. " | |
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " | |
) | |
missing_keys = [] | |
unexpected_keys = [] | |
error_msgs = [] | |
if from_tf: | |
if resolved_archive_file.endswith(".index"): | |
# Load from a TensorFlow 1.X checkpoint - provided by original authors | |
model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' | |
else: | |
# Load from our TensorFlow 2.0 checkpoints | |
try: | |
from transformers import load_tf2_checkpoint_in_pytorch_model | |
model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True) | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " | |
"https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
else: | |
# Convert old format to new format if needed from a PyTorch state_dict | |
old_keys = [] | |
new_keys = [] | |
for key in state_dict.keys(): | |
new_key = None | |
if "gamma" in key: | |
new_key = key.replace("gamma", "weight") | |
if "beta" in key: | |
new_key = key.replace("beta", "bias") | |
if new_key: | |
old_keys.append(key) | |
new_keys.append(new_key) | |
for old_key, new_key in zip(old_keys, new_keys): | |
state_dict[new_key] = state_dict.pop(old_key) | |
# copy state_dict so _load_from_state_dict can modify it | |
metadata = getattr(state_dict, "_metadata", None) | |
state_dict = state_dict.copy() | |
if metadata is not None: | |
state_dict._metadata = metadata | |
############################################################################################## | |
# Print out state_dict's contents: keys | |
''' | |
for key, _ in state_dict.items(): | |
print(key) | |
''' | |
############################################################################################## | |
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants | |
# so we need to apply the function recursively. | |
def load(module: nn.Module, prefix=""): | |
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
module._load_from_state_dict( | |
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs, | |
) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, prefix + name + ".") | |
# Make sure we are able to load base models as well as derived models (with heads) | |
start_prefix = "" | |
model_to_load = model | |
has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()) | |
if not hasattr(model, cls.base_model_prefix) and has_prefix_module: | |
start_prefix = cls.base_model_prefix + "." | |
if hasattr(model, cls.base_model_prefix) and not has_prefix_module: | |
model_to_load = getattr(model, cls.base_model_prefix) | |
load(model_to_load, prefix=start_prefix) | |
if model.__class__.__name__ != model_to_load.__class__.__name__: | |
base_model_state_dict = model_to_load.state_dict().keys() | |
head_model_state_dict_without_base_prefix = [ | |
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() | |
] | |
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " | |
f"initializing {model.__class__.__name__}: {unexpected_keys}\n" | |
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " | |
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n" | |
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect " | |
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." | |
) | |
else: | |
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") | |
if len(missing_keys) > 0: | |
logger.warning( | |
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " | |
f"and are newly initialized: {missing_keys}\n" | |
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
) | |
else: | |
logger.info( | |
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" | |
f"If your task is similar to the task the model of the ckeckpoint was trained on, " | |
f"you can already use {model.__class__.__name__} for predictions without further training." | |
) | |
if len(error_msgs) > 0: | |
raise RuntimeError( | |
"Error(s) in loading state_dict for {}:\n\t{}".format( | |
model.__class__.__name__, "\n\t".join(error_msgs) | |
) | |
) | |
model.tie_weights() # make sure token embedding weights are still tied if needed | |
# Set model in evaluation mode to deactivate DropOut modules by default | |
model.eval() | |
if output_loading_info: | |
loading_info = { | |
"missing_keys": missing_keys, | |
"unexpected_keys": unexpected_keys, | |
"error_msgs": error_msgs, | |
} | |
return model, loading_info | |
if hasattr(config, "xla_device") and config.xla_device: | |
import torch_xla.core.xla_model as xm | |
model = xm.send_cpu_data_to_device(model, xm.xla_device()) | |
model.to(xm.xla_device()) | |
return model | |
class Conv1D(nn.Module): | |
def __init__(self, nf, nx): | |
""" Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2) | |
Basically works like a Linear layer but the weights are transposed | |
""" | |
super().__init__() | |
self.nf = nf | |
w = torch.empty(nx, nf) | |
nn.init.normal_(w, std=0.02) | |
self.weight = nn.Parameter(w) | |
self.bias = nn.Parameter(torch.zeros(nf)) | |
def forward(self, x): | |
size_out = x.size()[:-1] + (self.nf,) | |
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) | |
x = x.view(*size_out) | |
return x | |
class PoolerStartLogits(nn.Module): | |
""" Compute SQuAD start_logits from sequence hidden states. """ | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, 1) | |
def forward(self, hidden_states, p_mask=None): | |
""" Args: | |
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)` | |
invalid position mask such as query and special symbols (PAD, SEP, CLS) | |
1.0 means token should be masked. | |
""" | |
x = self.dense(hidden_states).squeeze(-1) | |
if p_mask is not None: | |
if next(self.parameters()).dtype == torch.float16: | |
x = x * (1 - p_mask) - 65500 * p_mask | |
else: | |
x = x * (1 - p_mask) - 1e30 * p_mask | |
return x | |
class PoolerEndLogits(nn.Module): | |
""" Compute SQuAD end_logits from sequence hidden states and start token hidden state. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) | |
self.activation = nn.Tanh() | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dense_1 = nn.Linear(config.hidden_size, 1) | |
def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None): | |
""" Args: | |
One of ``start_states``, ``start_positions`` should be not None. | |
If both are set, ``start_positions`` overrides ``start_states``. | |
**start_states**: ``torch.LongTensor`` of shape identical to hidden_states | |
hidden states of the first tokens for the labeled span. | |
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
position of the first token for the labeled span: | |
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` | |
Mask of invalid position such as query and special symbols (PAD, SEP, CLS) | |
1.0 means token should be masked. | |
""" | |
assert ( | |
start_states is not None or start_positions is not None | |
), "One of start_states, start_positions should be not None" | |
if start_positions is not None: | |
slen, hsz = hidden_states.shape[-2:] | |
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) | |
start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) | |
x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) | |
x = self.activation(x) | |
x = self.LayerNorm(x) | |
x = self.dense_1(x).squeeze(-1) | |
if p_mask is not None: | |
if next(self.parameters()).dtype == torch.float16: | |
x = x * (1 - p_mask) - 65500 * p_mask | |
else: | |
x = x * (1 - p_mask) - 1e30 * p_mask | |
return x | |
class PoolerAnswerClass(nn.Module): | |
""" Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """ | |
def __init__(self, config): | |
super().__init__() | |
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) | |
self.activation = nn.Tanh() | |
self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) | |
def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None): | |
""" | |
Args: | |
One of ``start_states``, ``start_positions`` should be not None. | |
If both are set, ``start_positions`` overrides ``start_states``. | |
**start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``. | |
hidden states of the first tokens for the labeled span. | |
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
position of the first token for the labeled span. | |
**cls_index**: torch.LongTensor of shape ``(batch_size,)`` | |
position of the CLS token. If None, take the last token. | |
note(Original repo): | |
no dependency on end_feature so that we can obtain one single `cls_logits` | |
for each sample | |
""" | |
hsz = hidden_states.shape[-1] | |
assert ( | |
start_states is not None or start_positions is not None | |
), "One of start_states, start_positions should be not None" | |
if start_positions is not None: | |
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) | |
if cls_index is not None: | |
cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) | |
else: | |
cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) | |
x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) | |
x = self.activation(x) | |
x = self.dense_1(x).squeeze(-1) | |
return x | |
class SQuADHead(nn.Module): | |
r""" A SQuAD head inspired by XLNet. | |
Parameters: | |
config (:class:`~transformers.XLNetConfig`): Model configuration class with all the parameters of the model. | |
Inputs: | |
**hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)`` | |
hidden states of sequence tokens | |
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
position of the first token for the labeled span. | |
**end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
position of the last token for the labeled span. | |
**cls_index**: torch.LongTensor of shape ``(batch_size,)`` | |
position of the CLS token. If None, take the last token. | |
**is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
Whether the question has a possible answer in the paragraph or not. | |
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` | |
Mask of invalid position such as query and special symbols (PAD, SEP, CLS) | |
1.0 means token should be masked. | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. | |
**start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)`` | |
Log probabilities for the top config.start_n_top start token possibilities (beam-search). | |
**start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)`` | |
Indices for the top config.start_n_top start token possibilities (beam-search). | |
**end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` | |
Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). | |
**end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` | |
Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). | |
**cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
``torch.FloatTensor`` of shape ``(batch_size,)`` | |
Log probabilities for the ``is_impossible`` label of the answers. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.start_n_top = config.start_n_top | |
self.end_n_top = config.end_n_top | |
self.start_logits = PoolerStartLogits(config) | |
self.end_logits = PoolerEndLogits(config) | |
self.answer_class = PoolerAnswerClass(config) | |
def forward( | |
self, hidden_states, start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None, | |
): | |
outputs = () | |
start_logits = self.start_logits(hidden_states, p_mask=p_mask) | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, let's remove the dimension added by batch splitting | |
for x in (start_positions, end_positions, cls_index, is_impossible): | |
if x is not None and x.dim() > 1: | |
x.squeeze_(-1) | |
# during training, compute the end logits based on the ground truth of the start position | |
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) | |
loss_fct = CrossEntropyLoss() | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if cls_index is not None and is_impossible is not None: | |
# Predict answerability from the representation of CLS and START | |
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) | |
loss_fct_cls = nn.BCEWithLogitsLoss() | |
cls_loss = loss_fct_cls(cls_logits, is_impossible) | |
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss | |
total_loss += cls_loss * 0.5 | |
outputs = (total_loss,) + outputs | |
else: | |
# during inference, compute the end logits based on beam search | |
bsz, slen, hsz = hidden_states.size() | |
start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen) | |
start_top_log_probs, start_top_index = torch.topk( | |
start_log_probs, self.start_n_top, dim=-1 | |
) # shape (bsz, start_n_top) | |
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) | |
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) | |
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) | |
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( | |
start_states | |
) # shape (bsz, slen, start_n_top, hsz) | |
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None | |
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) | |
end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) | |
end_top_log_probs, end_top_index = torch.topk( | |
end_log_probs, self.end_n_top, dim=1 | |
) # shape (bsz, end_n_top, start_n_top) | |
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) | |
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) | |
start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) | |
cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) | |
outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits,) + outputs | |
# return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits | |
# or (if labels are provided) (total_loss,) | |
return outputs | |
class SequenceSummary(nn.Module): | |
r""" Compute a single vector summary of a sequence hidden states according to various possibilities: | |
Args of the config class: | |
summary_type: | |
- 'last' => [default] take the last token hidden state (like XLNet) | |
- 'first' => take the first token hidden state (like Bert) | |
- 'mean' => take the mean of all tokens hidden states | |
- 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2) | |
- 'attn' => Not implemented now, use multi-head attention | |
summary_use_proj: Add a projection after the vector extraction | |
summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. | |
summary_activation: 'tanh' or another string => add an activation to the output, Other => no activation. Default | |
summary_first_dropout: Add a dropout before the projection and activation | |
summary_last_dropout: Add a dropout after the projection and activation | |
""" | |
def __init__(self, config: PretrainedConfig): | |
super().__init__() | |
self.summary_type = getattr(config, "summary_type", "last") | |
if self.summary_type == "attn": | |
# We should use a standard multi-head attention module with absolute positional embedding for that. | |
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 | |
# We can probably just use the multi-head attention module of PyTorch >=1.1.0 | |
raise NotImplementedError | |
self.summary = Identity() | |
if hasattr(config, "summary_use_proj") and config.summary_use_proj: | |
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: | |
num_classes = config.num_labels | |
else: | |
num_classes = config.hidden_size | |
self.summary = nn.Linear(config.hidden_size, num_classes) | |
activation_string = getattr(config, "summary_activation", None) | |
self.activation: Callable = (get_activation(activation_string) if activation_string else Identity()) | |
self.first_dropout = Identity() | |
if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: | |
self.first_dropout = nn.Dropout(config.summary_first_dropout) | |
self.last_dropout = Identity() | |
if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: | |
self.last_dropout = nn.Dropout(config.summary_last_dropout) | |
def forward(self, hidden_states, cls_index=None): | |
""" hidden_states: float Tensor in shape [bsz, ..., seq_len, hidden_size], the hidden-states of the last layer. | |
cls_index: [optional] position of the classification token if summary_type == 'cls_index', | |
shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states. | |
if summary_type == 'cls_index' and cls_index is None: | |
we take the last token of the sequence as classification token | |
""" | |
if self.summary_type == "last": | |
output = hidden_states[:, -1] | |
elif self.summary_type == "first": | |
output = hidden_states[:, 0] | |
elif self.summary_type == "mean": | |
output = hidden_states.mean(dim=1) | |
elif self.summary_type == "cls_index": | |
if cls_index is None: | |
cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long,) | |
else: | |
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) | |
cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) | |
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states | |
output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) | |
elif self.summary_type == "attn": | |
raise NotImplementedError | |
output = self.first_dropout(output) | |
output = self.summary(output) | |
output = self.activation(output) | |
output = self.last_dropout(output) | |
return output | |
def prune_linear_layer(layer, index, dim=0): | |
""" Prune a linear layer (a model parameters) to keep only entries in index. | |
Return the pruned layer as a new layer with requires_grad=True. | |
Used to remove heads. | |
""" | |
index = index.to(layer.weight.device) | |
W = layer.weight.index_select(dim, index).clone().detach() | |
if layer.bias is not None: | |
if dim == 1: | |
b = layer.bias.clone().detach() | |
else: | |
b = layer.bias[index].clone().detach() | |
new_size = list(layer.weight.size()) | |
new_size[dim] = len(index) | |
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) | |
new_layer.weight.requires_grad = False | |
new_layer.weight.copy_(W.contiguous()) | |
new_layer.weight.requires_grad = True | |
if layer.bias is not None: | |
new_layer.bias.requires_grad = False | |
new_layer.bias.copy_(b.contiguous()) | |
new_layer.bias.requires_grad = True | |
return new_layer | |
def prune_conv1d_layer(layer, index, dim=1): | |
""" Prune a Conv1D layer (a model parameters) to keep only entries in index. | |
A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. | |
Return the pruned layer as a new layer with requires_grad=True. | |
Used to remove heads. | |
""" | |
index = index.to(layer.weight.device) | |
W = layer.weight.index_select(dim, index).clone().detach() | |
if dim == 0: | |
b = layer.bias.clone().detach() | |
else: | |
b = layer.bias[index].clone().detach() | |
new_size = list(layer.weight.size()) | |
new_size[dim] = len(index) | |
new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) | |
new_layer.weight.requires_grad = False | |
new_layer.weight.copy_(W.contiguous()) | |
new_layer.weight.requires_grad = True | |
new_layer.bias.requires_grad = False | |
new_layer.bias.copy_(b.contiguous()) | |
new_layer.bias.requires_grad = True | |
return new_layer | |
def prune_layer(layer, index, dim=None): | |
""" Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index. | |
Return the pruned layer as a new layer with requires_grad=True. | |
Used to remove heads. | |
""" | |
if isinstance(layer, nn.Linear): | |
return prune_linear_layer(layer, index, dim=0 if dim is None else dim) | |
elif isinstance(layer, Conv1D): | |
return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) | |
else: | |
raise ValueError("Can't prune layer of class {}".format(layer.__class__)) | |
def apply_chunking_to_forward( | |
chunk_size: int, chunk_dim: int, forward_fn: Callable[..., torch.Tensor], *input_tensors | |
) -> torch.Tensor: | |
""" | |
This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension `chunk_dim`. | |
It then applies a layer `forward_fn` to each chunk independently to save memory. | |
If the `forward_fn` is independent across the `chunk_dim` this function will yield the | |
same result as not applying it. | |
Args: | |
chunk_size: int - the chunk size of a chunked tensor. `num_chunks` = `len(input_tensors[0]) / chunk_size` | |
chunk_dim: int - the dimension over which the input_tensors should be chunked | |
forward_fn: fn - the forward fn of the model | |
input_tensors: tuple(torch.Tensor) - the input tensors of `forward_fn` which are chunked | |
Returns: | |
a Tensor with the same shape the foward_fn would have given if applied | |
Examples:: | |
# rename the usual forward() fn to forward_chunk() | |
def forward_chunk(self, hidden_states): | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
# implement a chunked forward function | |
def forward(self, hidden_states): | |
return apply_chunking_to_forward(self.chunk_size_lm_head, self.seq_len_dim, self.forward_chunk, hidden_states) | |
""" | |
assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors) | |
tensor_shape = input_tensors[0].shape | |
assert all( | |
input_tensor.shape == tensor_shape for input_tensor in input_tensors | |
), "All input tenors have to be of the same shape" | |
# inspect.signature exist since python 3.5 and is a python method -> no problem with backward compability | |
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) | |
assert num_args_in_forward_chunk_fn == len( | |
input_tensors | |
), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format( | |
num_args_in_forward_chunk_fn, len(input_tensors) | |
) | |
if chunk_size > 0: | |
assert ( | |
input_tensors[0].shape[chunk_dim] % chunk_size == 0 | |
), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format( | |
input_tensors[0].shape[chunk_dim], chunk_size | |
) | |
num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size | |
# chunk input tensor into tuples | |
input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) | |
# apply forward fn to every tuple | |
output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) | |
# concatenate output at same dimension | |
return torch.cat(output_chunks, dim=chunk_dim) | |
return forward_fn(*input_tensors) | |