Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from torch.optim import Adagrad | |
from fairseq.optim import LegacyFairseqOptimizer, register_optimizer | |
class FairseqAdagradWithGradClip(LegacyFairseqOptimizer): | |
def __init__(self, args, params): | |
super().__init__(args) | |
self._optimizer = AdagradWithGradClip(params, **self.optimizer_config) | |
def add_args(parser): | |
"""Add optimizer-specific arguments to the parser.""" | |
# fmt: off | |
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', | |
help='weight decay') | |
parser.add_argument('--adagrad-clip', default=0.0, type=float, metavar='D', | |
help='internal grad clip') | |
# fmt: on | |
def optimizer_config(self): | |
""" | |
Return a kwarg dictionary that will be used to override optimizer | |
args stored in checkpoints. This allows us to load a checkpoint and | |
resume training using a different set of optimizer args, e.g., with a | |
different learning rate. | |
""" | |
return { | |
"lr": self.args.lr[0], | |
"weight_decay": self.args.weight_decay, | |
"grad_clip": self.args.adagrad_clip, | |
} | |
def supports_flat_params(self): | |
return False | |
def _clip_grad(clr, grad, group_grad_clip): | |
if group_grad_clip > 0: | |
norm = grad.norm(2).item() | |
if norm > group_grad_clip: | |
clr *= group_grad_clip / (norm + 1e-10) | |
return clr | |
class AdagradWithGradClip(Adagrad): | |
"""Adagrad algorithm with custom gradient clipping""" | |
def __init__( | |
self, | |
params, | |
lr=1e-2, | |
lr_decay=0, | |
weight_decay=0, | |
initial_accumulator_value=0, | |
grad_clip=0, | |
): | |
Adagrad.__init__( | |
self, | |
params, | |
lr=lr, | |
lr_decay=lr_decay, | |
weight_decay=weight_decay, | |
initial_accumulator_value=initial_accumulator_value, | |
) | |
self.defaults["grad_clip"] = grad_clip | |
self.param_groups[0].setdefault("grad_clip", grad_clip) | |
def step(self, closure=None): | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
state = self.state[p] | |
state["step"] += 1 | |
if group["weight_decay"] != 0: | |
if p.grad.data.is_sparse: | |
raise RuntimeError( | |
"weight_decay option is " | |
"not compatible with sparse " | |
"gradients" | |
) | |
grad = grad.add(group["weight_decay"], p.data) | |
clr = group["lr"] / (1 + (state["step"] - 1) * group["lr_decay"]) | |
# clip | |
clr = _clip_grad(clr=clr, grad=grad, group_grad_clip=group["grad_clip"]) | |
if grad.is_sparse: | |
# the update is non-linear so indices must be unique | |
grad = grad.coalesce() | |
grad_indices = grad._indices() | |
grad_values = grad._values() | |
size = grad.size() | |
def make_sparse(values): | |
constructor = grad.new | |
if grad_indices.dim() == 0 or values.dim() == 0: | |
return constructor().resize_as_(grad) | |
return constructor(grad_indices, values, size) | |
state["sum"].add_(make_sparse(grad_values.pow(2))) | |
std = state["sum"]._sparse_mask(grad) | |
std_values = std._values().sqrt_().add_(1e-10) | |
p.data.add_(-clr, make_sparse(grad_values / std_values)) | |
else: | |
state["sum"].addcmul_(1, grad, grad) | |
std = state["sum"].sqrt().add_(1e-10) | |
p.data.addcdiv_(-clr, grad, std) | |
return loss | |