Rik Bose commited on
Commit
8d06405
·
1 Parent(s): 87dd4e3

efficiency?

Browse files
Files changed (1) hide show
  1. app.py +12 -9
app.py CHANGED
@@ -1,17 +1,20 @@
1
  import streamlit as st
2
 
3
- # Create a text element and let the reader know the data is loading.
4
- data_load_state = st.text('Loading data...')
5
- # Load 10,000 rows of data into the dataframe.
6
- # Notify the reader that the data was successfully loaded.
7
  from transformers import pipeline
8
 
9
- nlp = pipeline("fill-mask", model="roberta-base")
10
- data_load_state.text('Loading data...done!')
 
 
11
 
12
  text = st.text_input("Enter a sentence. Use a * for a mask.")
13
- result = nlp(text.replace("*",nlp.tokenizer.mask_token))
14
 
 
15
 
16
- for d in result:
17
- st.write(str(d["score"])+"\n"+d["sequence"])
 
 
 
 
 
 
1
  import streamlit as st
2
 
 
 
 
 
3
  from transformers import pipeline
4
 
5
+ @st.cached
6
+ def get_model():
7
+ return pipeline("fill-mask", model="roberta-base")
8
+
9
 
10
  text = st.text_input("Enter a sentence. Use a * for a mask.")
 
11
 
12
+ # Create a text element and let the reader know the data is loading.
13
 
14
+ if text:
15
+ data_load_state = st.text('Loading data...')
16
+ nlp = get_model()
17
+ result = nlp(text.replace("*",nlp.tokenizer.mask_token))
18
+ data_load_state.text('Loading data...done!')
19
+ for d in result:
20
+ st.write(str(d["score"])+"\n"+d["sequence"])