BioMike's picture
Upload 5 files
3a433e8 verified
raw
history blame
1.42 kB
import gradio as gr
with open('materials/introduction.html', 'r', encoding='utf-8') as file:
html_description = file.read()
with gr.Blocks() as landing_interface:
gr.HTML(html_description)
with gr.Accordion("How to run this model locally", open=False):
gr.Markdown(
"""
## Installation
To use this model, you must install the GLiClass Python library:
```
!pip install gliclass
```
## Usage
Once you've downloaded the GLiClass library, you can import the GLiClassModel and ZeroShotClassificationPipeline classes.
"""
)
gr.Code(
'''
from gliclass import GLiClassModel, ZeroShotClassificationPipeline
from transformers import AutoTokenizer
model = GLiClassModel.from_pretrained("knowledgator/gliclass-small-v1")
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-small-v1")
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')
text = "One day I will see the world!"
labels = ["travel", "dreams", "sport", "science", "politics"]
results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
for result in results:
print(result["label"], "=>", result["score"])
''',
language="python",
)