Spaces:
Running
Running
from transformers import PretrainedConfig | |
class MT5Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`MT5Model`] or a [`TFMT5Model`]. It is used to | |
instantiate a mT5 model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the mT5 | |
[google/mt5-small](https://huggingface.co/google/mt5-small) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Arguments: | |
vocab_size (`int`, *optional*, defaults to 250112): | |
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. | |
d_model (`int`, *optional*, defaults to 512): | |
Size of the encoder layers and the pooler layer. | |
d_kv (`int`, *optional*, defaults to 64): | |
Size of the key, query, value projections per attention head. In the conventional context, it is typically expected that `d_kv` has to be equal to `d_model // num_heads`. | |
But in the architecture of mt5-small, `d_kv` is not equal to `d_model //num_heads`. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`. | |
d_ff (`int`, *optional*, defaults to 1024): | |
Size of the intermediate feed forward layer in each `T5Block`. | |
num_layers (`int`, *optional*, defaults to 8): | |
Number of hidden layers in the Transformer encoder. | |
num_decoder_layers (`int`, *optional*): | |
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. | |
num_heads (`int`, *optional*, defaults to 6): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
relative_attention_num_buckets (`int`, *optional*, defaults to 32): | |
The number of buckets to use for each attention layer. | |
relative_attention_max_distance (`int`, *optional*, defaults to 128): | |
The maximum distance of the longer sequences for the bucket separation. | |
dropout_rate (`float`, *optional*, defaults to 0.1): | |
The ratio for all dropout layers. | |
classifier_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for classifier. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-6): | |
The epsilon used by the layer normalization layers. | |
initializer_factor (`float`, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`): | |
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
""" | |
model_type = "mt5" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
encoder_vocab_size=250112, | |
decoder_vocab_size=250112, | |
shared_embedding=False, | |
d_model=256, | |
d_kv=64, | |
d_ff=512, | |
num_layers=4, | |
num_decoder_layers=None, | |
num_heads=3, | |
relative_attention_num_buckets=32, | |
relative_attention_max_distance=128, | |
dropout_rate=0.1, | |
layer_norm_epsilon=1e-6, | |
initializer_factor=1.0, | |
feed_forward_proj="gated-gelu", | |
is_encoder_decoder=True, | |
use_cache=True, | |
tokenizer_class="ChemTokenizers.SMILES_IUPAC_FAST.FastTokenizer", | |
tie_word_embeddings=False, | |
pad_token_id=0, | |
eos_token_id=1, | |
decoder_start_token_id=2, | |
classifier_dropout=0.0, | |
**kwargs, | |
): | |
super().__init__( | |
is_encoder_decoder=is_encoder_decoder, | |
tokenizer_class=tokenizer_class, | |
tie_word_embeddings=tie_word_embeddings, | |
pad_token_id=pad_token_id, | |
eos_token_id=eos_token_id, | |
decoder_start_token_id=decoder_start_token_id, | |
**kwargs, | |
) | |
self.encoder_vocab_size = encoder_vocab_size | |
self.decoder_vocab_size = decoder_vocab_size | |
self.shared_embedding = shared_embedding | |
self.d_model = d_model | |
self.d_kv = d_kv | |
self.d_ff = d_ff | |
self.num_layers = num_layers | |
self.num_decoder_layers = ( | |
num_decoder_layers if num_decoder_layers is not None else self.num_layers | |
) # default = symmetry | |
self.num_heads = num_heads | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
self.relative_attention_max_distance = relative_attention_max_distance | |
self.dropout_rate = dropout_rate | |
self.classifier_dropout = classifier_dropout | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_factor = initializer_factor | |
self.feed_forward_proj = feed_forward_proj | |
self.use_cache = use_cache | |
act_info = self.feed_forward_proj.split("-") | |
self.dense_act_fn = act_info[-1] | |
self.is_gated_act = act_info[0] == "gated" | |
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: | |
raise ValueError( | |
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " | |
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " | |
"'gated-gelu' or 'relu'" | |
) | |
# for backwards compatibility | |
if feed_forward_proj == "gated-gelu": | |
self.dense_act_fn = "gelu_new" | |
def hidden_size(self): | |
return self.d_model | |
def num_attention_heads(self): | |
return self.num_heads | |
def num_hidden_layers(self): | |
return self.num_layers | |