|
import gradio as gr |
|
|
|
from transformers import pipeline |
|
|
|
detection = pipeline('comment detection') |
|
|
|
def score_comment(comment): |
|
vectorized_comment = vectorizer([comment]) |
|
results = model.predict(vectorized_comment) |
|
|
|
text = '' |
|
for idx, col in enumerate(df.columns[2:]): |
|
text += '{}: {}\n'.format(col, results[0][idx]>0.5) |
|
|
|
return text |
|
|
|
demo = gr.Interface( |
|
fn=score_comment, |
|
inputs=gr.inputs.Textbox(lines=2, placeholder='Comment to score'), |
|
outputs='text', |
|
title='Hate Comment Detector', |
|
description='Enter comment to verify', |
|
theme='compact', |
|
layout='vertical', |
|
width=600, |
|
height=400, |
|
allow_flagging=True, |
|
bgcolor='#f2f2f2', |
|
) |
|
|
|
demo.launch(share=False) |