Spaces:
Runtime error
Runtime error
NKeistyle
commited on
Commit
·
0a6843b
1
Parent(s):
385bd31
update app.py get_fish_price.py
Browse files- app.py +11 -2
- get_fish_price.py +173 -0
- notebook/update_data.ipynb +642 -0
app.py
CHANGED
|
@@ -3,17 +3,26 @@ import numpy as np
|
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
from model import SarimaModel
|
| 7 |
|
| 8 |
df_hamachi = pd.read_csv(r'./data/hamachi_price.csv', encoding='utf_8_sig')
|
| 9 |
df_hamachi["date"] = df_hamachi["date"].apply(lambda x: pd.to_datetime(str(x)))
|
| 10 |
|
| 11 |
df_hamachi = df_hamachi.set_index(df_hamachi["date"])
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
|
|
|
| 14 |
|
| 15 |
def graph(forecast_range):
|
| 16 |
-
today = dt.date.today()
|
| 17 |
year = today.year
|
| 18 |
sarima = SarimaModel(forecast_range=int(forecast_range))
|
| 19 |
sarima_fit = sarima.fit(train)
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
import gradio as gr
|
| 6 |
+
import get_fish_price
|
| 7 |
from model import SarimaModel
|
| 8 |
|
| 9 |
df_hamachi = pd.read_csv(r'./data/hamachi_price.csv', encoding='utf_8_sig')
|
| 10 |
df_hamachi["date"] = df_hamachi["date"].apply(lambda x: pd.to_datetime(str(x)))
|
| 11 |
|
| 12 |
df_hamachi = df_hamachi.set_index(df_hamachi["date"])
|
| 13 |
+
today = dt.date.today()
|
| 14 |
+
|
| 15 |
+
if df_hamachi['date'].max().date() < today:
|
| 16 |
+
start_date = df_hamachi['date'].max().date() + dt.timedelta(days=1)
|
| 17 |
+
temp_df = get_fish_price.get_fish_price_data(start_date=start_date, end_date=today)
|
| 18 |
+
temp_df["date"] = temp_df["date"].apply(lambda x: pd.to_datetime(str(x)))
|
| 19 |
+
temp_df = temp_df.set_index(temp_df["date"])
|
| 20 |
+
df_hamachi = pd.concat([df_hamachi, temp_df])
|
| 21 |
+
df_hamachi.to_csv(r'/data/hamachi_price.csv', encoding='utf_8_sig')
|
| 22 |
|
| 23 |
+
train = df_hamachi["quantity"]
|
| 24 |
|
| 25 |
def graph(forecast_range):
|
|
|
|
| 26 |
year = today.year
|
| 27 |
sarima = SarimaModel(forecast_range=int(forecast_range))
|
| 28 |
sarima_fit = sarima.fit(train)
|
get_fish_price.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import codecs
|
| 2 |
+
import io
|
| 3 |
+
import random
|
| 4 |
+
import requests
|
| 5 |
+
import time
|
| 6 |
+
from datetime import date, timedelta
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from typing import Generator, Tuple
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def date_range(
|
| 15 |
+
start: date, stop: date, step: timedelta = timedelta(1)
|
| 16 |
+
) -> Generator[date, None, None]:
|
| 17 |
+
"""startからendまで日付をstep日ずつループさせるジェネレータ"""
|
| 18 |
+
current = start
|
| 19 |
+
while current < stop:
|
| 20 |
+
yield current
|
| 21 |
+
current += step
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_url(download_date: date) -> Tuple[str, str]:
|
| 25 |
+
"""ダウンロードするURLと日付の文字列を返す"""
|
| 26 |
+
month = download_date.strftime("%Y%m")
|
| 27 |
+
day = download_date.strftime("%Y%m%d")
|
| 28 |
+
return (
|
| 29 |
+
f"https://www.shijou-nippo.metro.tokyo.lg.jp/SN/{month}/{day}/Sui/Sui_K1.csv",
|
| 30 |
+
day,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def content_wrap(content):
|
| 35 |
+
"""1行目にヘッダ行が来るまでスキップする"""
|
| 36 |
+
buffer = ""
|
| 37 |
+
first = True
|
| 38 |
+
for line in io.BytesIO(content):
|
| 39 |
+
line_str = codecs.decode(line, "shift-jis")
|
| 40 |
+
if first:
|
| 41 |
+
if "品名" in line_str:
|
| 42 |
+
first = False
|
| 43 |
+
buffer = line_str
|
| 44 |
+
else:
|
| 45 |
+
continue
|
| 46 |
+
else:
|
| 47 |
+
buffer += line_str
|
| 48 |
+
return io.StringIO(buffer)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def insert_data(data, day, low_price, center_price, high_price, quantity):
|
| 52 |
+
""" "データをリストに追加する"""
|
| 53 |
+
data["date"].append(day)
|
| 54 |
+
data["low_price"].append(low_price)
|
| 55 |
+
data["center_price"].append(center_price)
|
| 56 |
+
data["high_price"].append(high_price)
|
| 57 |
+
data["quantity"].append(quantity)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def to_numeric(x):
|
| 61 |
+
"""文字列を数値に変換する"""
|
| 62 |
+
if isinstance(x, str):
|
| 63 |
+
return float(x)
|
| 64 |
+
else:
|
| 65 |
+
return x
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_fish_price_data(start_date: date, end_date: date) -> pd.core.frame.DataFrame:
|
| 69 |
+
"""
|
| 70 |
+
東京卸売市場からデータを引っ張ってくる
|
| 71 |
+
|
| 72 |
+
:param start_date: 開始日
|
| 73 |
+
:param end_date: 終了日
|
| 74 |
+
:return: はまちの値段を結合したデータ
|
| 75 |
+
"""
|
| 76 |
+
data = {
|
| 77 |
+
"date": [],
|
| 78 |
+
"low_price": [],
|
| 79 |
+
"center_price": [],
|
| 80 |
+
"high_price": [],
|
| 81 |
+
"quantity": [],
|
| 82 |
+
}
|
| 83 |
+
iterator = tqdm(
|
| 84 |
+
date_range(start_date, end_date), total=(end_date - start_date).days
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
for download_date in iterator:
|
| 88 |
+
url, day = get_url(download_date)
|
| 89 |
+
iterator.set_description(day)
|
| 90 |
+
response = requests.get(url)
|
| 91 |
+
|
| 92 |
+
# URLが存在しないとき
|
| 93 |
+
if response.status_code == 404:
|
| 94 |
+
insert_data(data, day, np.nan, np.nan, np.nan, 0)
|
| 95 |
+
continue
|
| 96 |
+
assert (
|
| 97 |
+
response.status_code == 200
|
| 98 |
+
), f"Unexpected HTTP response. Please check the website {url}."
|
| 99 |
+
|
| 100 |
+
df = pd.read_csv(content_wrap(response.content))
|
| 101 |
+
|
| 102 |
+
# 欠損値補完
|
| 103 |
+
price_cols = ["安値(円)", "中値(円)", "高値(円)"]
|
| 104 |
+
for c in price_cols:
|
| 105 |
+
df[c].mask(df[c] == "-", np.nan, inplace=True)
|
| 106 |
+
df[c].mask(df[c] == "−", np.nan, inplace=True)
|
| 107 |
+
df["卸売数量"].mask(df["卸売数量"] == "-", np.nan, inplace=True)
|
| 108 |
+
df["卸売数量"].mask(df["卸売数量"] == "−", np.nan, inplace=True)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# 品目 == はまち の行だけ抽出
|
| 112 |
+
df_aji = df.loc[df["品名"] == "はまち", ["卸売数量"] + price_cols]
|
| 113 |
+
|
| 114 |
+
# あじの販売がなかったら欠損扱いに
|
| 115 |
+
if len(df_aji) == 0:
|
| 116 |
+
insert_data(data, day, np.nan, np.nan, np.nan, 0)
|
| 117 |
+
continue
|
| 118 |
+
|
| 119 |
+
isnan = lambda x: isinstance(x, float) and np.isnan(x)
|
| 120 |
+
# はまちの販売実績を調べる
|
| 121 |
+
low_prices = []
|
| 122 |
+
center_prices = []
|
| 123 |
+
high_prices = []
|
| 124 |
+
quantities = []
|
| 125 |
+
for i, row in enumerate(df_aji.iloc):
|
| 126 |
+
lp, cp, hp, q = row[price_cols + ["卸売数量"]]
|
| 127 |
+
lp, cp, hp, q = (
|
| 128 |
+
to_numeric(lp),
|
| 129 |
+
to_numeric(cp),
|
| 130 |
+
to_numeric(hp),
|
| 131 |
+
to_numeric(q),
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# 中値だけが記録されている -> 価格帯が1個だけなので高値、安値も中値と同じにしておく
|
| 135 |
+
if isnan(lp) and isnan(hp) and (not isnan(cp)):
|
| 136 |
+
low_prices.append(cp)
|
| 137 |
+
center_prices.append(cp)
|
| 138 |
+
high_prices.append(cp)
|
| 139 |
+
|
| 140 |
+
# 高値・安値があり中値がない -> 価格帯2個、とりあえず両者の平均を中値とする
|
| 141 |
+
elif (not isnan(lp)) and (not isnan(hp)) and isnan(cp):
|
| 142 |
+
low_prices.append(lp)
|
| 143 |
+
center_prices.append((lp + hp) / 2)
|
| 144 |
+
high_prices.append(hp)
|
| 145 |
+
else:
|
| 146 |
+
low_prices.append(lp)
|
| 147 |
+
center_prices.append(cp)
|
| 148 |
+
high_prices.append(hp)
|
| 149 |
+
|
| 150 |
+
if isnan(row["卸売数量"]):
|
| 151 |
+
quantities.append(0)
|
| 152 |
+
else:
|
| 153 |
+
quantities.append(q)
|
| 154 |
+
|
| 155 |
+
low_price = int(min(low_prices))
|
| 156 |
+
center_price = int(sum(center_prices) / len(center_prices))
|
| 157 |
+
high_price = int(max(high_prices))
|
| 158 |
+
quantity = int(float(sum(quantities)))
|
| 159 |
+
|
| 160 |
+
# 保存
|
| 161 |
+
insert_data(data, day, low_price, center_price, high_price, quantity)
|
| 162 |
+
# 短期間にアクセスが集中しないようにクールタイムを設定
|
| 163 |
+
time.sleep(max(0.5 + random.normalvariate(0, 0.3), 0.1))
|
| 164 |
+
# DataFrameを作成
|
| 165 |
+
df = pd.DataFrame(data)
|
| 166 |
+
return df
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
if __name__ == "__main__":
|
| 170 |
+
start_date = date(2020, 12, 21)
|
| 171 |
+
end_date = date(2020, 12, 26)
|
| 172 |
+
df = get_fish_price_data(start_date=start_date, end_date=end_date)
|
| 173 |
+
df.to_csv("fish_price.csv", index=False)
|
notebook/update_data.ipynb
ADDED
|
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 24,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import datetime as dt\n",
|
| 10 |
+
"import numpy as np\n",
|
| 11 |
+
"import pandas as pd\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"import sys\n",
|
| 14 |
+
"sys.path.append(\"../\")\n",
|
| 15 |
+
"import get_fish_price"
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "code",
|
| 20 |
+
"execution_count": 25,
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"outputs": [],
|
| 23 |
+
"source": [
|
| 24 |
+
"df_hamachi = pd.read_csv(r'../data/hamachi_price.csv', encoding='utf_8_sig')\n",
|
| 25 |
+
"df_hamachi[\"date\"] = df_hamachi[\"date\"].apply(lambda x: pd.to_datetime(str(x)))\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"df_hamachi = df_hamachi.set_index(df_hamachi[\"date\"])"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 26,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [
|
| 35 |
+
{
|
| 36 |
+
"data": {
|
| 37 |
+
"text/html": [
|
| 38 |
+
"<div>\n",
|
| 39 |
+
"<style scoped>\n",
|
| 40 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 41 |
+
" vertical-align: middle;\n",
|
| 42 |
+
" }\n",
|
| 43 |
+
"\n",
|
| 44 |
+
" .dataframe tbody tr th {\n",
|
| 45 |
+
" vertical-align: top;\n",
|
| 46 |
+
" }\n",
|
| 47 |
+
"\n",
|
| 48 |
+
" .dataframe thead th {\n",
|
| 49 |
+
" text-align: right;\n",
|
| 50 |
+
" }\n",
|
| 51 |
+
"</style>\n",
|
| 52 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 53 |
+
" <thead>\n",
|
| 54 |
+
" <tr style=\"text-align: right;\">\n",
|
| 55 |
+
" <th></th>\n",
|
| 56 |
+
" <th>date</th>\n",
|
| 57 |
+
" <th>low_price</th>\n",
|
| 58 |
+
" <th>center_price</th>\n",
|
| 59 |
+
" <th>high_price</th>\n",
|
| 60 |
+
" <th>quantity</th>\n",
|
| 61 |
+
" </tr>\n",
|
| 62 |
+
" <tr>\n",
|
| 63 |
+
" <th>date</th>\n",
|
| 64 |
+
" <th></th>\n",
|
| 65 |
+
" <th></th>\n",
|
| 66 |
+
" <th></th>\n",
|
| 67 |
+
" <th></th>\n",
|
| 68 |
+
" <th></th>\n",
|
| 69 |
+
" </tr>\n",
|
| 70 |
+
" </thead>\n",
|
| 71 |
+
" <tbody>\n",
|
| 72 |
+
" <tr>\n",
|
| 73 |
+
" <th>2012-03-01</th>\n",
|
| 74 |
+
" <td>2012-03-01</td>\n",
|
| 75 |
+
" <td>546.0</td>\n",
|
| 76 |
+
" <td>588.0</td>\n",
|
| 77 |
+
" <td>788.0</td>\n",
|
| 78 |
+
" <td>57277.0</td>\n",
|
| 79 |
+
" </tr>\n",
|
| 80 |
+
" <tr>\n",
|
| 81 |
+
" <th>2012-03-02</th>\n",
|
| 82 |
+
" <td>2012-03-02</td>\n",
|
| 83 |
+
" <td>546.0</td>\n",
|
| 84 |
+
" <td>588.0</td>\n",
|
| 85 |
+
" <td>788.0</td>\n",
|
| 86 |
+
" <td>58926.0</td>\n",
|
| 87 |
+
" </tr>\n",
|
| 88 |
+
" <tr>\n",
|
| 89 |
+
" <th>2012-03-03</th>\n",
|
| 90 |
+
" <td>2012-03-03</td>\n",
|
| 91 |
+
" <td>546.0</td>\n",
|
| 92 |
+
" <td>588.0</td>\n",
|
| 93 |
+
" <td>788.0</td>\n",
|
| 94 |
+
" <td>83306.0</td>\n",
|
| 95 |
+
" </tr>\n",
|
| 96 |
+
" <tr>\n",
|
| 97 |
+
" <th>2012-03-04</th>\n",
|
| 98 |
+
" <td>2012-03-04</td>\n",
|
| 99 |
+
" <td>NaN</td>\n",
|
| 100 |
+
" <td>NaN</td>\n",
|
| 101 |
+
" <td>NaN</td>\n",
|
| 102 |
+
" <td>0.0</td>\n",
|
| 103 |
+
" </tr>\n",
|
| 104 |
+
" <tr>\n",
|
| 105 |
+
" <th>2012-03-05</th>\n",
|
| 106 |
+
" <td>2012-03-05</td>\n",
|
| 107 |
+
" <td>546.0</td>\n",
|
| 108 |
+
" <td>588.0</td>\n",
|
| 109 |
+
" <td>788.0</td>\n",
|
| 110 |
+
" <td>50844.0</td>\n",
|
| 111 |
+
" </tr>\n",
|
| 112 |
+
" <tr>\n",
|
| 113 |
+
" <th>...</th>\n",
|
| 114 |
+
" <td>...</td>\n",
|
| 115 |
+
" <td>...</td>\n",
|
| 116 |
+
" <td>...</td>\n",
|
| 117 |
+
" <td>...</td>\n",
|
| 118 |
+
" <td>...</td>\n",
|
| 119 |
+
" </tr>\n",
|
| 120 |
+
" <tr>\n",
|
| 121 |
+
" <th>2023-02-23</th>\n",
|
| 122 |
+
" <td>2023-02-23</td>\n",
|
| 123 |
+
" <td>NaN</td>\n",
|
| 124 |
+
" <td>NaN</td>\n",
|
| 125 |
+
" <td>NaN</td>\n",
|
| 126 |
+
" <td>0.0</td>\n",
|
| 127 |
+
" </tr>\n",
|
| 128 |
+
" <tr>\n",
|
| 129 |
+
" <th>2023-02-24</th>\n",
|
| 130 |
+
" <td>2023-02-24</td>\n",
|
| 131 |
+
" <td>1512.0</td>\n",
|
| 132 |
+
" <td>1566.0</td>\n",
|
| 133 |
+
" <td>1620.0</td>\n",
|
| 134 |
+
" <td>17643.0</td>\n",
|
| 135 |
+
" </tr>\n",
|
| 136 |
+
" <tr>\n",
|
| 137 |
+
" <th>2023-02-25</th>\n",
|
| 138 |
+
" <td>2023-02-25</td>\n",
|
| 139 |
+
" <td>1512.0</td>\n",
|
| 140 |
+
" <td>1566.0</td>\n",
|
| 141 |
+
" <td>1620.0</td>\n",
|
| 142 |
+
" <td>16470.0</td>\n",
|
| 143 |
+
" </tr>\n",
|
| 144 |
+
" <tr>\n",
|
| 145 |
+
" <th>2023-02-26</th>\n",
|
| 146 |
+
" <td>2023-02-26</td>\n",
|
| 147 |
+
" <td>NaN</td>\n",
|
| 148 |
+
" <td>NaN</td>\n",
|
| 149 |
+
" <td>NaN</td>\n",
|
| 150 |
+
" <td>0.0</td>\n",
|
| 151 |
+
" </tr>\n",
|
| 152 |
+
" <tr>\n",
|
| 153 |
+
" <th>2023-02-27</th>\n",
|
| 154 |
+
" <td>2023-02-27</td>\n",
|
| 155 |
+
" <td>1512.0</td>\n",
|
| 156 |
+
" <td>1566.0</td>\n",
|
| 157 |
+
" <td>1620.0</td>\n",
|
| 158 |
+
" <td>11921.0</td>\n",
|
| 159 |
+
" </tr>\n",
|
| 160 |
+
" </tbody>\n",
|
| 161 |
+
"</table>\n",
|
| 162 |
+
"<p>4016 rows × 5 columns</p>\n",
|
| 163 |
+
"</div>"
|
| 164 |
+
],
|
| 165 |
+
"text/plain": [
|
| 166 |
+
" date low_price center_price high_price quantity\n",
|
| 167 |
+
"date \n",
|
| 168 |
+
"2012-03-01 2012-03-01 546.0 588.0 788.0 57277.0\n",
|
| 169 |
+
"2012-03-02 2012-03-02 546.0 588.0 788.0 58926.0\n",
|
| 170 |
+
"2012-03-03 2012-03-03 546.0 588.0 788.0 83306.0\n",
|
| 171 |
+
"2012-03-04 2012-03-04 NaN NaN NaN 0.0\n",
|
| 172 |
+
"2012-03-05 2012-03-05 546.0 588.0 788.0 50844.0\n",
|
| 173 |
+
"... ... ... ... ... ...\n",
|
| 174 |
+
"2023-02-23 2023-02-23 NaN NaN NaN 0.0\n",
|
| 175 |
+
"2023-02-24 2023-02-24 1512.0 1566.0 1620.0 17643.0\n",
|
| 176 |
+
"2023-02-25 2023-02-25 1512.0 1566.0 1620.0 16470.0\n",
|
| 177 |
+
"2023-02-26 2023-02-26 NaN NaN NaN 0.0\n",
|
| 178 |
+
"2023-02-27 2023-02-27 1512.0 1566.0 1620.0 11921.0\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"[4016 rows x 5 columns]"
|
| 181 |
+
]
|
| 182 |
+
},
|
| 183 |
+
"execution_count": 26,
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"output_type": "execute_result"
|
| 186 |
+
}
|
| 187 |
+
],
|
| 188 |
+
"source": [
|
| 189 |
+
"df_hamachi"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "code",
|
| 194 |
+
"execution_count": 31,
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"outputs": [
|
| 197 |
+
{
|
| 198 |
+
"data": {
|
| 199 |
+
"text/plain": [
|
| 200 |
+
"datetime.date(2023, 2, 27)"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
"execution_count": 31,
|
| 204 |
+
"metadata": {},
|
| 205 |
+
"output_type": "execute_result"
|
| 206 |
+
}
|
| 207 |
+
],
|
| 208 |
+
"source": [
|
| 209 |
+
"df_hamachi['date'].max().date()"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"execution_count": 28,
|
| 215 |
+
"metadata": {},
|
| 216 |
+
"outputs": [
|
| 217 |
+
{
|
| 218 |
+
"data": {
|
| 219 |
+
"text/plain": [
|
| 220 |
+
"datetime.date(2023, 3, 17)"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
"execution_count": 28,
|
| 224 |
+
"metadata": {},
|
| 225 |
+
"output_type": "execute_result"
|
| 226 |
+
}
|
| 227 |
+
],
|
| 228 |
+
"source": [
|
| 229 |
+
"today = dt.date.today()\n",
|
| 230 |
+
"today"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "code",
|
| 235 |
+
"execution_count": 37,
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"outputs": [
|
| 238 |
+
{
|
| 239 |
+
"data": {
|
| 240 |
+
"text/plain": [
|
| 241 |
+
"datetime.date(2023, 3, 1)"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
"execution_count": 37,
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"output_type": "execute_result"
|
| 247 |
+
}
|
| 248 |
+
],
|
| 249 |
+
"source": [
|
| 250 |
+
"df_hamachi['date'].max().date() + dt.timedelta(days=1)"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "code",
|
| 255 |
+
"execution_count": 42,
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"outputs": [
|
| 258 |
+
{
|
| 259 |
+
"name": "stderr",
|
| 260 |
+
"output_type": "stream",
|
| 261 |
+
"text": [
|
| 262 |
+
"20230316: 100%|██████████| 17/17 [00:07<00:00, 2.39it/s]\n"
|
| 263 |
+
]
|
| 264 |
+
}
|
| 265 |
+
],
|
| 266 |
+
"source": [
|
| 267 |
+
"if df_hamachi['date'].max().date() < today:\n",
|
| 268 |
+
" start_date = df_hamachi['date'].max().date() + dt.timedelta(days=1)\n",
|
| 269 |
+
" temp_df = get_fish_price.get_fish_price_data(start_date=start_date, end_date=today)\n",
|
| 270 |
+
" temp_df[\"date\"] = temp_df[\"date\"].apply(lambda x: pd.to_datetime(str(x)))\n",
|
| 271 |
+
" temp_df = temp_df.set_index(temp_df[\"date\"])\n",
|
| 272 |
+
" df_hamachi = pd.concat([df_hamachi, temp_df])\n",
|
| 273 |
+
" df_hamachi.to_csv(r'/data/hamachi_price.csv', encoding='utf_8_sig')"
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"cell_type": "code",
|
| 278 |
+
"execution_count": 46,
|
| 279 |
+
"metadata": {},
|
| 280 |
+
"outputs": [
|
| 281 |
+
{
|
| 282 |
+
"data": {
|
| 283 |
+
"text/html": [
|
| 284 |
+
"<div>\n",
|
| 285 |
+
"<style scoped>\n",
|
| 286 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 287 |
+
" vertical-align: middle;\n",
|
| 288 |
+
" }\n",
|
| 289 |
+
"\n",
|
| 290 |
+
" .dataframe tbody tr th {\n",
|
| 291 |
+
" vertical-align: top;\n",
|
| 292 |
+
" }\n",
|
| 293 |
+
"\n",
|
| 294 |
+
" .dataframe thead th {\n",
|
| 295 |
+
" text-align: right;\n",
|
| 296 |
+
" }\n",
|
| 297 |
+
"</style>\n",
|
| 298 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 299 |
+
" <thead>\n",
|
| 300 |
+
" <tr style=\"text-align: right;\">\n",
|
| 301 |
+
" <th></th>\n",
|
| 302 |
+
" <th>date</th>\n",
|
| 303 |
+
" <th>low_price</th>\n",
|
| 304 |
+
" <th>center_price</th>\n",
|
| 305 |
+
" <th>high_price</th>\n",
|
| 306 |
+
" <th>quantity</th>\n",
|
| 307 |
+
" </tr>\n",
|
| 308 |
+
" <tr>\n",
|
| 309 |
+
" <th>date</th>\n",
|
| 310 |
+
" <th></th>\n",
|
| 311 |
+
" <th></th>\n",
|
| 312 |
+
" <th></th>\n",
|
| 313 |
+
" <th></th>\n",
|
| 314 |
+
" <th></th>\n",
|
| 315 |
+
" </tr>\n",
|
| 316 |
+
" </thead>\n",
|
| 317 |
+
" <tbody>\n",
|
| 318 |
+
" <tr>\n",
|
| 319 |
+
" <th>2023-02-15</th>\n",
|
| 320 |
+
" <td>2023-02-15</td>\n",
|
| 321 |
+
" <td>NaN</td>\n",
|
| 322 |
+
" <td>NaN</td>\n",
|
| 323 |
+
" <td>NaN</td>\n",
|
| 324 |
+
" <td>0.0</td>\n",
|
| 325 |
+
" </tr>\n",
|
| 326 |
+
" <tr>\n",
|
| 327 |
+
" <th>2023-02-16</th>\n",
|
| 328 |
+
" <td>2023-02-16</td>\n",
|
| 329 |
+
" <td>1512.0</td>\n",
|
| 330 |
+
" <td>1566.0</td>\n",
|
| 331 |
+
" <td>1620.0</td>\n",
|
| 332 |
+
" <td>19955.0</td>\n",
|
| 333 |
+
" </tr>\n",
|
| 334 |
+
" <tr>\n",
|
| 335 |
+
" <th>2023-02-17</th>\n",
|
| 336 |
+
" <td>2023-02-17</td>\n",
|
| 337 |
+
" <td>1512.0</td>\n",
|
| 338 |
+
" <td>1566.0</td>\n",
|
| 339 |
+
" <td>1620.0</td>\n",
|
| 340 |
+
" <td>14942.0</td>\n",
|
| 341 |
+
" </tr>\n",
|
| 342 |
+
" <tr>\n",
|
| 343 |
+
" <th>2023-02-18</th>\n",
|
| 344 |
+
" <td>2023-02-18</td>\n",
|
| 345 |
+
" <td>1512.0</td>\n",
|
| 346 |
+
" <td>1566.0</td>\n",
|
| 347 |
+
" <td>1620.0</td>\n",
|
| 348 |
+
" <td>18391.0</td>\n",
|
| 349 |
+
" </tr>\n",
|
| 350 |
+
" <tr>\n",
|
| 351 |
+
" <th>2023-02-19</th>\n",
|
| 352 |
+
" <td>2023-02-19</td>\n",
|
| 353 |
+
" <td>NaN</td>\n",
|
| 354 |
+
" <td>NaN</td>\n",
|
| 355 |
+
" <td>NaN</td>\n",
|
| 356 |
+
" <td>0.0</td>\n",
|
| 357 |
+
" </tr>\n",
|
| 358 |
+
" <tr>\n",
|
| 359 |
+
" <th>2023-02-20</th>\n",
|
| 360 |
+
" <td>2023-02-20</td>\n",
|
| 361 |
+
" <td>1512.0</td>\n",
|
| 362 |
+
" <td>1566.0</td>\n",
|
| 363 |
+
" <td>1620.0</td>\n",
|
| 364 |
+
" <td>17548.0</td>\n",
|
| 365 |
+
" </tr>\n",
|
| 366 |
+
" <tr>\n",
|
| 367 |
+
" <th>2023-02-21</th>\n",
|
| 368 |
+
" <td>2023-02-21</td>\n",
|
| 369 |
+
" <td>1512.0</td>\n",
|
| 370 |
+
" <td>1566.0</td>\n",
|
| 371 |
+
" <td>1620.0</td>\n",
|
| 372 |
+
" <td>12495.0</td>\n",
|
| 373 |
+
" </tr>\n",
|
| 374 |
+
" <tr>\n",
|
| 375 |
+
" <th>2023-02-22</th>\n",
|
| 376 |
+
" <td>2023-02-22</td>\n",
|
| 377 |
+
" <td>1512.0</td>\n",
|
| 378 |
+
" <td>1566.0</td>\n",
|
| 379 |
+
" <td>1620.0</td>\n",
|
| 380 |
+
" <td>15880.0</td>\n",
|
| 381 |
+
" </tr>\n",
|
| 382 |
+
" <tr>\n",
|
| 383 |
+
" <th>2023-02-23</th>\n",
|
| 384 |
+
" <td>2023-02-23</td>\n",
|
| 385 |
+
" <td>NaN</td>\n",
|
| 386 |
+
" <td>NaN</td>\n",
|
| 387 |
+
" <td>NaN</td>\n",
|
| 388 |
+
" <td>0.0</td>\n",
|
| 389 |
+
" </tr>\n",
|
| 390 |
+
" <tr>\n",
|
| 391 |
+
" <th>2023-02-24</th>\n",
|
| 392 |
+
" <td>2023-02-24</td>\n",
|
| 393 |
+
" <td>1512.0</td>\n",
|
| 394 |
+
" <td>1566.0</td>\n",
|
| 395 |
+
" <td>1620.0</td>\n",
|
| 396 |
+
" <td>17643.0</td>\n",
|
| 397 |
+
" </tr>\n",
|
| 398 |
+
" <tr>\n",
|
| 399 |
+
" <th>2023-02-25</th>\n",
|
| 400 |
+
" <td>2023-02-25</td>\n",
|
| 401 |
+
" <td>1512.0</td>\n",
|
| 402 |
+
" <td>1566.0</td>\n",
|
| 403 |
+
" <td>1620.0</td>\n",
|
| 404 |
+
" <td>16470.0</td>\n",
|
| 405 |
+
" </tr>\n",
|
| 406 |
+
" <tr>\n",
|
| 407 |
+
" <th>2023-02-26</th>\n",
|
| 408 |
+
" <td>2023-02-26</td>\n",
|
| 409 |
+
" <td>NaN</td>\n",
|
| 410 |
+
" <td>NaN</td>\n",
|
| 411 |
+
" <td>NaN</td>\n",
|
| 412 |
+
" <td>0.0</td>\n",
|
| 413 |
+
" </tr>\n",
|
| 414 |
+
" <tr>\n",
|
| 415 |
+
" <th>2023-02-27</th>\n",
|
| 416 |
+
" <td>2023-02-27</td>\n",
|
| 417 |
+
" <td>1512.0</td>\n",
|
| 418 |
+
" <td>1566.0</td>\n",
|
| 419 |
+
" <td>1620.0</td>\n",
|
| 420 |
+
" <td>11921.0</td>\n",
|
| 421 |
+
" </tr>\n",
|
| 422 |
+
" <tr>\n",
|
| 423 |
+
" <th>2023-02-28</th>\n",
|
| 424 |
+
" <td>2023-02-28</td>\n",
|
| 425 |
+
" <td>1512.0</td>\n",
|
| 426 |
+
" <td>1566.0</td>\n",
|
| 427 |
+
" <td>1620.0</td>\n",
|
| 428 |
+
" <td>13823.0</td>\n",
|
| 429 |
+
" </tr>\n",
|
| 430 |
+
" <tr>\n",
|
| 431 |
+
" <th>2023-03-01</th>\n",
|
| 432 |
+
" <td>2023-03-01</td>\n",
|
| 433 |
+
" <td>NaN</td>\n",
|
| 434 |
+
" <td>NaN</td>\n",
|
| 435 |
+
" <td>NaN</td>\n",
|
| 436 |
+
" <td>0.0</td>\n",
|
| 437 |
+
" </tr>\n",
|
| 438 |
+
" <tr>\n",
|
| 439 |
+
" <th>2023-03-02</th>\n",
|
| 440 |
+
" <td>2023-03-02</td>\n",
|
| 441 |
+
" <td>1512.0</td>\n",
|
| 442 |
+
" <td>1566.0</td>\n",
|
| 443 |
+
" <td>1620.0</td>\n",
|
| 444 |
+
" <td>13342.0</td>\n",
|
| 445 |
+
" </tr>\n",
|
| 446 |
+
" <tr>\n",
|
| 447 |
+
" <th>2023-03-03</th>\n",
|
| 448 |
+
" <td>2023-03-03</td>\n",
|
| 449 |
+
" <td>1512.0</td>\n",
|
| 450 |
+
" <td>1566.0</td>\n",
|
| 451 |
+
" <td>1620.0</td>\n",
|
| 452 |
+
" <td>13660.0</td>\n",
|
| 453 |
+
" </tr>\n",
|
| 454 |
+
" <tr>\n",
|
| 455 |
+
" <th>2023-03-04</th>\n",
|
| 456 |
+
" <td>2023-03-04</td>\n",
|
| 457 |
+
" <td>1512.0</td>\n",
|
| 458 |
+
" <td>1566.0</td>\n",
|
| 459 |
+
" <td>1620.0</td>\n",
|
| 460 |
+
" <td>15128.0</td>\n",
|
| 461 |
+
" </tr>\n",
|
| 462 |
+
" <tr>\n",
|
| 463 |
+
" <th>2023-03-05</th>\n",
|
| 464 |
+
" <td>2023-03-05</td>\n",
|
| 465 |
+
" <td>NaN</td>\n",
|
| 466 |
+
" <td>NaN</td>\n",
|
| 467 |
+
" <td>NaN</td>\n",
|
| 468 |
+
" <td>0.0</td>\n",
|
| 469 |
+
" </tr>\n",
|
| 470 |
+
" <tr>\n",
|
| 471 |
+
" <th>2023-03-06</th>\n",
|
| 472 |
+
" <td>2023-03-06</td>\n",
|
| 473 |
+
" <td>1512.0</td>\n",
|
| 474 |
+
" <td>1566.0</td>\n",
|
| 475 |
+
" <td>1620.0</td>\n",
|
| 476 |
+
" <td>10972.0</td>\n",
|
| 477 |
+
" </tr>\n",
|
| 478 |
+
" <tr>\n",
|
| 479 |
+
" <th>2023-03-07</th>\n",
|
| 480 |
+
" <td>2023-03-07</td>\n",
|
| 481 |
+
" <td>1512.0</td>\n",
|
| 482 |
+
" <td>1566.0</td>\n",
|
| 483 |
+
" <td>1620.0</td>\n",
|
| 484 |
+
" <td>12020.0</td>\n",
|
| 485 |
+
" </tr>\n",
|
| 486 |
+
" <tr>\n",
|
| 487 |
+
" <th>2023-03-08</th>\n",
|
| 488 |
+
" <td>2023-03-08</td>\n",
|
| 489 |
+
" <td>NaN</td>\n",
|
| 490 |
+
" <td>NaN</td>\n",
|
| 491 |
+
" <td>NaN</td>\n",
|
| 492 |
+
" <td>0.0</td>\n",
|
| 493 |
+
" </tr>\n",
|
| 494 |
+
" <tr>\n",
|
| 495 |
+
" <th>2023-03-09</th>\n",
|
| 496 |
+
" <td>2023-03-09</td>\n",
|
| 497 |
+
" <td>1512.0</td>\n",
|
| 498 |
+
" <td>1566.0</td>\n",
|
| 499 |
+
" <td>1620.0</td>\n",
|
| 500 |
+
" <td>11045.0</td>\n",
|
| 501 |
+
" </tr>\n",
|
| 502 |
+
" <tr>\n",
|
| 503 |
+
" <th>2023-03-10</th>\n",
|
| 504 |
+
" <td>2023-03-10</td>\n",
|
| 505 |
+
" <td>1512.0</td>\n",
|
| 506 |
+
" <td>1566.0</td>\n",
|
| 507 |
+
" <td>1620.0</td>\n",
|
| 508 |
+
" <td>9888.0</td>\n",
|
| 509 |
+
" </tr>\n",
|
| 510 |
+
" <tr>\n",
|
| 511 |
+
" <th>2023-03-11</th>\n",
|
| 512 |
+
" <td>2023-03-11</td>\n",
|
| 513 |
+
" <td>1512.0</td>\n",
|
| 514 |
+
" <td>1566.0</td>\n",
|
| 515 |
+
" <td>1620.0</td>\n",
|
| 516 |
+
" <td>15630.0</td>\n",
|
| 517 |
+
" </tr>\n",
|
| 518 |
+
" <tr>\n",
|
| 519 |
+
" <th>2023-03-12</th>\n",
|
| 520 |
+
" <td>2023-03-12</td>\n",
|
| 521 |
+
" <td>NaN</td>\n",
|
| 522 |
+
" <td>NaN</td>\n",
|
| 523 |
+
" <td>NaN</td>\n",
|
| 524 |
+
" <td>0.0</td>\n",
|
| 525 |
+
" </tr>\n",
|
| 526 |
+
" <tr>\n",
|
| 527 |
+
" <th>2023-03-13</th>\n",
|
| 528 |
+
" <td>2023-03-13</td>\n",
|
| 529 |
+
" <td>1512.0</td>\n",
|
| 530 |
+
" <td>1566.0</td>\n",
|
| 531 |
+
" <td>1620.0</td>\n",
|
| 532 |
+
" <td>9428.0</td>\n",
|
| 533 |
+
" </tr>\n",
|
| 534 |
+
" <tr>\n",
|
| 535 |
+
" <th>2023-03-14</th>\n",
|
| 536 |
+
" <td>2023-03-14</td>\n",
|
| 537 |
+
" <td>1512.0</td>\n",
|
| 538 |
+
" <td>1566.0</td>\n",
|
| 539 |
+
" <td>1620.0</td>\n",
|
| 540 |
+
" <td>12271.0</td>\n",
|
| 541 |
+
" </tr>\n",
|
| 542 |
+
" <tr>\n",
|
| 543 |
+
" <th>2023-03-15</th>\n",
|
| 544 |
+
" <td>2023-03-15</td>\n",
|
| 545 |
+
" <td>NaN</td>\n",
|
| 546 |
+
" <td>NaN</td>\n",
|
| 547 |
+
" <td>NaN</td>\n",
|
| 548 |
+
" <td>0.0</td>\n",
|
| 549 |
+
" </tr>\n",
|
| 550 |
+
" <tr>\n",
|
| 551 |
+
" <th>2023-03-16</th>\n",
|
| 552 |
+
" <td>2023-03-16</td>\n",
|
| 553 |
+
" <td>1512.0</td>\n",
|
| 554 |
+
" <td>1566.0</td>\n",
|
| 555 |
+
" <td>1620.0</td>\n",
|
| 556 |
+
" <td>9849.0</td>\n",
|
| 557 |
+
" </tr>\n",
|
| 558 |
+
" </tbody>\n",
|
| 559 |
+
"</table>\n",
|
| 560 |
+
"</div>"
|
| 561 |
+
],
|
| 562 |
+
"text/plain": [
|
| 563 |
+
" date low_price center_price high_price quantity\n",
|
| 564 |
+
"date \n",
|
| 565 |
+
"2023-02-15 2023-02-15 NaN NaN NaN 0.0\n",
|
| 566 |
+
"2023-02-16 2023-02-16 1512.0 1566.0 1620.0 19955.0\n",
|
| 567 |
+
"2023-02-17 2023-02-17 1512.0 1566.0 1620.0 14942.0\n",
|
| 568 |
+
"2023-02-18 2023-02-18 1512.0 1566.0 1620.0 18391.0\n",
|
| 569 |
+
"2023-02-19 2023-02-19 NaN NaN NaN 0.0\n",
|
| 570 |
+
"2023-02-20 2023-02-20 1512.0 1566.0 1620.0 17548.0\n",
|
| 571 |
+
"2023-02-21 2023-02-21 1512.0 1566.0 1620.0 12495.0\n",
|
| 572 |
+
"2023-02-22 2023-02-22 1512.0 1566.0 1620.0 15880.0\n",
|
| 573 |
+
"2023-02-23 2023-02-23 NaN NaN NaN 0.0\n",
|
| 574 |
+
"2023-02-24 2023-02-24 1512.0 1566.0 1620.0 17643.0\n",
|
| 575 |
+
"2023-02-25 2023-02-25 1512.0 1566.0 1620.0 16470.0\n",
|
| 576 |
+
"2023-02-26 2023-02-26 NaN NaN NaN 0.0\n",
|
| 577 |
+
"2023-02-27 2023-02-27 1512.0 1566.0 1620.0 11921.0\n",
|
| 578 |
+
"2023-02-28 2023-02-28 1512.0 1566.0 1620.0 13823.0\n",
|
| 579 |
+
"2023-03-01 2023-03-01 NaN NaN NaN 0.0\n",
|
| 580 |
+
"2023-03-02 2023-03-02 1512.0 1566.0 1620.0 13342.0\n",
|
| 581 |
+
"2023-03-03 2023-03-03 1512.0 1566.0 1620.0 13660.0\n",
|
| 582 |
+
"2023-03-04 2023-03-04 1512.0 1566.0 1620.0 15128.0\n",
|
| 583 |
+
"2023-03-05 2023-03-05 NaN NaN NaN 0.0\n",
|
| 584 |
+
"2023-03-06 2023-03-06 1512.0 1566.0 1620.0 10972.0\n",
|
| 585 |
+
"2023-03-07 2023-03-07 1512.0 1566.0 1620.0 12020.0\n",
|
| 586 |
+
"2023-03-08 2023-03-08 NaN NaN NaN 0.0\n",
|
| 587 |
+
"2023-03-09 2023-03-09 1512.0 1566.0 1620.0 11045.0\n",
|
| 588 |
+
"2023-03-10 2023-03-10 1512.0 1566.0 1620.0 9888.0\n",
|
| 589 |
+
"2023-03-11 2023-03-11 1512.0 1566.0 1620.0 15630.0\n",
|
| 590 |
+
"2023-03-12 2023-03-12 NaN NaN NaN 0.0\n",
|
| 591 |
+
"2023-03-13 2023-03-13 1512.0 1566.0 1620.0 9428.0\n",
|
| 592 |
+
"2023-03-14 2023-03-14 1512.0 1566.0 1620.0 12271.0\n",
|
| 593 |
+
"2023-03-15 2023-03-15 NaN NaN NaN 0.0\n",
|
| 594 |
+
"2023-03-16 2023-03-16 1512.0 1566.0 1620.0 9849.0"
|
| 595 |
+
]
|
| 596 |
+
},
|
| 597 |
+
"execution_count": 46,
|
| 598 |
+
"metadata": {},
|
| 599 |
+
"output_type": "execute_result"
|
| 600 |
+
}
|
| 601 |
+
],
|
| 602 |
+
"source": [
|
| 603 |
+
"df_hamachi.tail(30)\n",
|
| 604 |
+
"\n"
|
| 605 |
+
]
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"cell_type": "code",
|
| 609 |
+
"execution_count": null,
|
| 610 |
+
"metadata": {},
|
| 611 |
+
"outputs": [],
|
| 612 |
+
"source": []
|
| 613 |
+
}
|
| 614 |
+
],
|
| 615 |
+
"metadata": {
|
| 616 |
+
"kernelspec": {
|
| 617 |
+
"display_name": "python38",
|
| 618 |
+
"language": "python",
|
| 619 |
+
"name": "python3"
|
| 620 |
+
},
|
| 621 |
+
"language_info": {
|
| 622 |
+
"codemirror_mode": {
|
| 623 |
+
"name": "ipython",
|
| 624 |
+
"version": 3
|
| 625 |
+
},
|
| 626 |
+
"file_extension": ".py",
|
| 627 |
+
"mimetype": "text/x-python",
|
| 628 |
+
"name": "python",
|
| 629 |
+
"nbconvert_exporter": "python",
|
| 630 |
+
"pygments_lexer": "ipython3",
|
| 631 |
+
"version": "3.8.16"
|
| 632 |
+
},
|
| 633 |
+
"orig_nbformat": 4,
|
| 634 |
+
"vscode": {
|
| 635 |
+
"interpreter": {
|
| 636 |
+
"hash": "1141289dbaa853feef947890554ae6471105425144b165b485924c74cd7145f9"
|
| 637 |
+
}
|
| 638 |
+
}
|
| 639 |
+
},
|
| 640 |
+
"nbformat": 4,
|
| 641 |
+
"nbformat_minor": 2
|
| 642 |
+
}
|