Spaces:
Sleeping
Sleeping
kms
commited on
Commit
β’
bb988cc
1
Parent(s):
1ed04e8
7th
Browse files- README.md +1 -1
- app.py +191 -0
- cityscape-1.jpg +0 -0
- cityscape-2.jpg +0 -0
- cityscape-3.jpg +0 -0
- labels.txt +19 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: green
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.44.4
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from matplotlib import gridspec
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import tensorflow as tf
|
8 |
+
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
+
|
10 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
+
"nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
|
12 |
+
)
|
13 |
+
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
14 |
+
"nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
|
15 |
+
)
|
16 |
+
|
17 |
+
def ade_palette():
|
18 |
+
"""ADE20K palette that maps each class to RGB values."""
|
19 |
+
return [
|
20 |
+
[255, 0, 0],
|
21 |
+
[255, 94, 0],
|
22 |
+
[255, 187, 0],
|
23 |
+
[255, 228, 0],
|
24 |
+
[171, 242, 0],
|
25 |
+
[29, 219, 22],
|
26 |
+
[0, 216, 255],
|
27 |
+
[0, 84, 255],
|
28 |
+
[1, 0, 255],
|
29 |
+
[95, 0, 255],
|
30 |
+
[255, 0, 221],
|
31 |
+
[255, 0, 127],
|
32 |
+
[0, 0, 0],
|
33 |
+
[255, 255, 255],
|
34 |
+
[255, 216, 216],
|
35 |
+
[250, 224, 212],
|
36 |
+
[250, 236, 197],
|
37 |
+
[250, 244, 192],
|
38 |
+
[228, 247, 186],
|
39 |
+
[206, 251, 201],
|
40 |
+
[212, 244, 250],
|
41 |
+
[217, 229, 255],
|
42 |
+
[218, 217, 255],
|
43 |
+
[232, 217, 255],
|
44 |
+
[255, 217, 250],
|
45 |
+
[255, 217, 236],
|
46 |
+
[246, 246, 246],
|
47 |
+
[234, 234, 234],
|
48 |
+
[255, 167, 167],
|
49 |
+
[255, 193, 158],
|
50 |
+
[255, 224, 140],
|
51 |
+
[250, 237, 125],
|
52 |
+
[206, 242, 121],
|
53 |
+
[183, 240, 177],
|
54 |
+
[178, 235, 244],
|
55 |
+
[178, 204, 255],
|
56 |
+
[181, 178, 255],
|
57 |
+
[209, 178, 255],
|
58 |
+
[255, 178, 245],
|
59 |
+
[255, 178, 217],
|
60 |
+
[213, 213, 213],
|
61 |
+
[189, 189, 189],
|
62 |
+
[241, 95, 95],
|
63 |
+
[242, 150, 97],
|
64 |
+
[242, 203, 97],
|
65 |
+
[229, 216, 92],
|
66 |
+
[188, 229, 92],
|
67 |
+
[134, 229, 127],
|
68 |
+
[92, 209, 229],
|
69 |
+
[103, 153, 255],
|
70 |
+
[107, 102, 255],
|
71 |
+
[165, 102, 255],
|
72 |
+
[243, 97, 220],
|
73 |
+
[243, 97, 166],
|
74 |
+
[166, 166, 166],
|
75 |
+
[140, 140, 140],
|
76 |
+
[93, 93, 93],
|
77 |
+
[116, 116, 116],
|
78 |
+
[217, 65, 140],
|
79 |
+
[217, 65, 197],
|
80 |
+
[128, 65, 217],
|
81 |
+
[70, 65, 217],
|
82 |
+
[67, 116, 217],
|
83 |
+
[61, 183, 204],
|
84 |
+
[71, 200, 62],
|
85 |
+
[159, 201, 60],
|
86 |
+
[196, 183, 59],
|
87 |
+
[204, 166, 61],
|
88 |
+
[204, 114, 61],
|
89 |
+
[204, 61, 61],
|
90 |
+
[152, 0, 0],
|
91 |
+
[153, 56, 0],
|
92 |
+
[153, 112, 0],
|
93 |
+
[153, 138, 0],
|
94 |
+
[107, 153, 0],
|
95 |
+
[47, 157, 39],
|
96 |
+
[0, 130, 153],
|
97 |
+
[0, 51, 153],
|
98 |
+
[5, 0, 153],
|
99 |
+
[63, 0, 153],
|
100 |
+
[153, 0, 133],
|
101 |
+
[153, 0, 76],
|
102 |
+
[76, 76, 76],
|
103 |
+
[53, 53, 53],
|
104 |
+
[25, 25, 25],
|
105 |
+
[33, 33, 33],
|
106 |
+
[102, 0, 51],
|
107 |
+
[102, 0, 88],
|
108 |
+
[42, 0, 102],
|
109 |
+
[3, 0, 102],
|
110 |
+
[0, 34, 102],
|
111 |
+
[0, 87, 102],
|
112 |
+
[34, 116, 28],
|
113 |
+
[71, 102, 0],
|
114 |
+
[102, 92, 0],
|
115 |
+
[102, 75, 0],
|
116 |
+
[102, 37, 0],
|
117 |
+
[103, 0, 0]
|
118 |
+
|
119 |
+
]
|
120 |
+
|
121 |
+
labels_list = []
|
122 |
+
|
123 |
+
with open(r'labels.txt', 'r') as fp:
|
124 |
+
for line in fp:
|
125 |
+
labels_list.append(line[:-1])
|
126 |
+
|
127 |
+
colormap = np.asarray(ade_palette())
|
128 |
+
|
129 |
+
def label_to_color_image(label):
|
130 |
+
if label.ndim != 2:
|
131 |
+
raise ValueError("Expect 2-D input label")
|
132 |
+
|
133 |
+
if np.max(label) >= len(colormap):
|
134 |
+
raise ValueError("label value too large.")
|
135 |
+
return colormap[label]
|
136 |
+
|
137 |
+
def draw_plot(pred_img, seg):
|
138 |
+
fig = plt.figure(figsize=(20, 15))
|
139 |
+
|
140 |
+
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
141 |
+
|
142 |
+
plt.subplot(grid_spec[0])
|
143 |
+
plt.imshow(pred_img)
|
144 |
+
plt.axis('off')
|
145 |
+
LABEL_NAMES = np.asarray(labels_list)
|
146 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
147 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
148 |
+
|
149 |
+
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
150 |
+
ax = plt.subplot(grid_spec[1])
|
151 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
152 |
+
ax.yaxis.tick_right()
|
153 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
154 |
+
plt.xticks([], [])
|
155 |
+
ax.tick_params(width=0.0, labelsize=25)
|
156 |
+
return fig
|
157 |
+
|
158 |
+
def sepia(input_img):
|
159 |
+
input_img = Image.fromarray(input_img)
|
160 |
+
|
161 |
+
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
162 |
+
outputs = model(**inputs)
|
163 |
+
logits = outputs.logits
|
164 |
+
|
165 |
+
logits = tf.transpose(logits, [0, 2, 3, 1])
|
166 |
+
logits = tf.image.resize(
|
167 |
+
logits, input_img.size[::-1]
|
168 |
+
) # We reverse the shape of `image` because `image.size` returns width and height.
|
169 |
+
seg = tf.math.argmax(logits, axis=-1)[0]
|
170 |
+
|
171 |
+
color_seg = np.zeros(
|
172 |
+
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
173 |
+
) # height, width, 3
|
174 |
+
for label, color in enumerate(colormap):
|
175 |
+
color_seg[seg.numpy() == label, :] = color
|
176 |
+
|
177 |
+
# Show image + mask
|
178 |
+
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
179 |
+
pred_img = pred_img.astype(np.uint8)
|
180 |
+
|
181 |
+
fig = draw_plot(pred_img, seg)
|
182 |
+
return fig
|
183 |
+
|
184 |
+
demo = gr.Interface(fn=sepia,
|
185 |
+
inputs=gr.Image(shape=(400, 600)),
|
186 |
+
outputs=['plot'],
|
187 |
+
examples=["cityscape-1.jpg", "cityscape-2.jpg", "cityscape-3.jpg"],
|
188 |
+
allow_flagging='never')
|
189 |
+
|
190 |
+
|
191 |
+
demo.launch()
|
cityscape-1.jpg
ADDED
cityscape-2.jpg
ADDED
cityscape-3.jpg
ADDED
labels.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
road
|
2 |
+
sidewalk
|
3 |
+
building
|
4 |
+
wall
|
5 |
+
fence
|
6 |
+
pole
|
7 |
+
traffic light
|
8 |
+
traffic sign
|
9 |
+
vegetation
|
10 |
+
terrain
|
11 |
+
sky
|
12 |
+
person
|
13 |
+
rider
|
14 |
+
car
|
15 |
+
truck
|
16 |
+
bus
|
17 |
+
train
|
18 |
+
motorcycle
|
19 |
+
bicycle
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers~=4.35.0
|
3 |
+
tensorflow~=2.14.0
|
4 |
+
numpy~=1.26.1
|
5 |
+
Image
|
6 |
+
matplotlib~=3.8.1
|
7 |
+
gradio~=4.2.0
|
8 |
+
Pillow~=10.1.0
|