Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import difflib
|
3 |
+
|
4 |
+
# Assuming you have 'lpi_df' and 'similarity' defined before this point
|
5 |
+
|
6 |
+
st.title('Course Recommendation App')
|
7 |
+
|
8 |
+
user_input = st.text_input('Enter What You Want to Learn : ')
|
9 |
+
|
10 |
+
if user_input:
|
11 |
+
list_of_all_titles = lpi_df['Module'].tolist()
|
12 |
+
find_close_match = difflib.get_close_matches(user_input, list_of_all_titles)
|
13 |
+
|
14 |
+
if find_close_match:
|
15 |
+
close_match = find_close_match[0]
|
16 |
+
index_of_the_course = lpi_df[lpi_df.Module == close_match].index.values[0]
|
17 |
+
similarity_score = list(enumerate(similarity[index_of_the_course]))
|
18 |
+
sorted_similar_course = sorted(similarity_score, key=lambda x: x[1], reverse=True)
|
19 |
+
|
20 |
+
st.write('Courses suggested for you :')
|
21 |
+
|
22 |
+
i = 1
|
23 |
+
for course in sorted_similar_course:
|
24 |
+
index = course[0]
|
25 |
+
title_from_index = lpi_df[lpi_df.index == index]['Module'].values[0]
|
26 |
+
if i < 30:
|
27 |
+
st.write(f"{i}. {title_from_index}")
|
28 |
+
i += 1
|
29 |
+
|
30 |
+
if i == 1:
|
31 |
+
st.write('No close matches found.')
|
32 |
+
else:
|
33 |
+
st.write('No close matches found.')
|
34 |
+
|