comicface.ai / data_loader.py
kmnis's picture
Added app.py and data loader
c9bfa1f
raw
history blame
3.77 kB
import os
import tensorflow as tf
# Define Training variable
BUFFER_SIZE = 400
BATCH_SIZE = 32
IMG_WIDTH = 256
IMG_HEIGHT = 256
AUTOTUNE = tf.data.AUTOTUNE
def load_images(image_file):
image = tf.io.read_file(image_file)
image = tf.image.decode_jpeg(image)
image = tf.cast(image, tf.float32)
return image
def resize(content_image, style_image, height, width):
content_image = tf.image.resize(content_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
if style_image is not None:
style_image = tf.image.resize(style_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return content_image, style_image
def random_crop(content_image, style_image):
stacked_image = tf.stack([content_image, style_image], axis=0)
cropped_image = tf.image.random_crop(
stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])
return cropped_image[0], cropped_image[1]
def normalize(content_image, style_image):
content_image = (content_image / 127.5) - 1
if style_image is not None:
style_image = (style_image / 127.5) - 1
return content_image, style_image
@tf.function()
def random_jitter(content_image, style_image):
# resizing to 286 x 286 x 3
content_image, style_image = resize(content_image, style_image, 286, 286)
# randomly cropping to 256 x 256 x 3
content_image, style_image = random_crop(content_image, style_image)
if tf.random.uniform(()) > 0.5:
# random mirroring
content_image = tf.image.flip_left_right(content_image)
style_image = tf.image.flip_left_right(style_image)
return content_image, style_image
def preprocess_train_image(content_path, style_path):
content_image = load_images(content_path)
style_image = load_images(style_path)
content_image, style_image = random_jitter(content_image, style_image)
content_image, style_image = normalize(content_image, style_image)
return content_image, style_image
def preprocess_test_image(content_path, style_path=None):
content_image = load_images(content_path)
if style_path is None:
style_image = None
else:
style_image = load_images(style_path)
content_image, style_image = resize(content_image, style_image,
IMG_HEIGHT, IMG_WIDTH)
content_image, style_image = normalize(content_image, style_image)
if style_image is None:
return content_image
else:
return content_image, style_image
def create_image_loader(path):
images = os.listdir(path)
images = [os.path.join(path, p) for p in images]
images.sort()
# split the images in train and test
total_images = len(images)
train = images[: int(0.9 * total_images)]
test = images[int(0.9 * total_images):]
# Build the tf.data datasets.
train_ds = tf.data.Dataset.from_tensor_slices(train)
test_ds = tf.data.Dataset.from_tensor_slices(test)
return train_ds, test_ds
def data_loader(content_path="../data/face", style_path="../data/comics"):
train_content_ds, test_content_ds = create_image_loader(content_path)
train_style_ds, test_style_ds = create_image_loader(style_path)
# Zipping the style and content datasets.
train_ds = (
tf.data.Dataset.zip((train_content_ds, train_style_ds))
.map(preprocess_train_image)
.shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE)
.prefetch(AUTOTUNE)
)
test_ds = (
tf.data.Dataset.zip((test_content_ds, test_style_ds))
.map(preprocess_test_image)
.batch(BATCH_SIZE)
.prefetch(AUTOTUNE)
)
return train_ds, test_ds