kmirijan's picture
Adding run file and requirements
05b89be
raw
history blame
1.77 kB
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredFileLoader, DirectoryLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
import os
destination_folder = './data/'
txt_dir_loader = DirectoryLoader(destination_folder,
loader_cls=UnstructuredFileLoader)
data = txt_dir_loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,
chunk_overlap=20)
documents = text_splitter.split_documents(data)
embeddings = OpenAIEmbeddings()
persist_directory = "vector_db"
vectordb = Chroma.from_documents(documents=documents,
embedding=embeddings,
persist_directory=persist_directory)
vectordb.persist()
vectordb = None
vectordb = Chroma(persist_directory=persist_directory,
embedding_function=embeddings)
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo")
doc_retriever = vectordb.as_retriever()
hp_qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=doc_retriever)
def answer_question(query):
return(hp_qa.run(query))
if __name__ == "main":
import gradio as gr
gr.Interface(
answer_question,
[
gr.inputs.Textbox(lines=2, label="Query"),
],
gr.outputs.Textbox(label="Response"),
title="Ask Harry Potter",
description=""" Ask Harry Potter is a tool that let's you ask a question with
the books' text as reference""",
).launch()