Spaces:
Sleeping
Sleeping
Add application file
Browse files- app.py +71 -0
- flagged/log.csv +9 -0
- requirements.tx +0 -0
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
import gradio as gr; print(gr.__version__)
|
4 |
+
|
5 |
+
# Replace with path to your ESG data (CSV or other supported format)
|
6 |
+
data_path = "ESG_data.csv"
|
7 |
+
company_ratings = [
|
8 |
+
{"Company Name": "Apple Inc.", "Rating": 4.5},
|
9 |
+
{"Company Name": "Amazon.com, Inc.", "Rating": 4.2},
|
10 |
+
{"Company Name": "Microsoft Corporation", "Rating": 4.7},
|
11 |
+
{"Company Name": "Alphabet Inc. (Google)", "Rating": 4.8},
|
12 |
+
{"Company Name": "Tesla, Inc.", "Rating": 3.9},
|
13 |
+
{"Company Name": "Meta Platforms Inc. (Facebook)", "Rating": 3.1},
|
14 |
+
]
|
15 |
+
|
16 |
+
# Load ESG data
|
17 |
+
esg_data = pd.DataFrame(company_ratings)
|
18 |
+
import gradio as gr
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
|
22 |
+
inputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(4,"dynamic"), label="Input Data", interactive=1)]
|
23 |
+
|
24 |
+
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Failures"])]
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
def infer(input_dataframe):
|
29 |
+
return pd.DataFrame(input_dataframe)
|
30 |
+
|
31 |
+
gr.Interface(fn = infer, inputs = inputs, outputs = outputs, examples = [[esg_data.head(2)]]).launch()
|
32 |
+
|
33 |
+
# def get_esg_scores(ticker):
|
34 |
+
# """
|
35 |
+
# Finds ESG scores for a given ticker symbol in the loaded data.
|
36 |
+
|
37 |
+
# Args:
|
38 |
+
# ticker (str): Ticker symbol of the company.
|
39 |
+
|
40 |
+
# Returns:
|
41 |
+
# pandas.DataFrame: Subset of ESG data for the ticker,
|
42 |
+
# containing ESG scores if found, or an empty DataFrame
|
43 |
+
# if not found.
|
44 |
+
# """
|
45 |
+
# filtered_data = esg_data[esg_data["Ticker Symbol"] == ticker.upper()]
|
46 |
+
# return filtered_data if not filtered_data.empty else pd.DataFrame()
|
47 |
+
|
48 |
+
# def display_esg_scores(dataframe):
|
49 |
+
# """
|
50 |
+
# Displays ESG scores in a table format if a DataFrame is provided,
|
51 |
+
# otherwise displays a message indicating no data found.
|
52 |
+
|
53 |
+
# Args:
|
54 |
+
# dataframe (pandas.DataFrame): DataFrame containing ESG scores.
|
55 |
+
# """
|
56 |
+
# if dataframe.empty:
|
57 |
+
# return "No ESG data found for this ticker."
|
58 |
+
# else:
|
59 |
+
# # Select relevant ESG score columns (adjust based on your data)
|
60 |
+
# esg_scores = dataframe[["Ticker Symbol", "Governance Score", "Social Score", "Environmental Score"]]
|
61 |
+
# return gr.DataTable(dataframe=esg_scores.to_dict())
|
62 |
+
|
63 |
+
# iface = gr.Interface(
|
64 |
+
# fn=get_esg_scores,
|
65 |
+
# inputs=gr.inputs.Textbox(label="Ticker Symbol"),
|
66 |
+
# outputs=esg_data,
|
67 |
+
# title="ESG Score Lookup",
|
68 |
+
# description="Enter a company ticker symbol to view its ESG scores (if available).",
|
69 |
+
# )
|
70 |
+
|
71 |
+
# iface.launch()
|
flagged/log.csv
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name,Output,timestamp
|
2 |
+
,Hello !!,2024-05-20 02:22:21.273157
|
3 |
+
,Hello !!,2024-05-20 02:22:22.248193
|
4 |
+
,Hello !!,2024-05-20 02:22:23.235456
|
5 |
+
,Hello !!,2024-05-20 02:22:23.675012
|
6 |
+
,Hello !!,2024-05-20 02:22:27.643848
|
7 |
+
,Hello !!,2024-05-20 02:22:28.585934
|
8 |
+
,Hello !!,2024-05-20 02:22:29.303183
|
9 |
+
,Hello !!,2024-05-20 02:22:30.054843
|
requirements.tx
ADDED
File without changes
|