Spaces:
Running
Running
from typing import Any, Optional | |
import lightning as L | |
import torch | |
import torch.nn.functional as F | |
from lightning.pytorch.utilities.types import OptimizerLRScheduler | |
import fish_speech.utils as utils | |
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID | |
from fish_speech.models.text2semantic.llama import NaiveTransformer | |
log = utils.RankedLogger(__name__, rank_zero_only=True) | |
class TextToSemantic(L.LightningModule): | |
def __init__( | |
self, | |
model: NaiveTransformer, | |
optimizer: Any, | |
lr_scheduler: Any, | |
): | |
super().__init__() | |
self.model = model | |
self.optimizer_builder = optimizer | |
self.lr_scheduler_builder = lr_scheduler | |
def forward(self, x): | |
return self.model(x) | |
def on_save_checkpoint(self, checkpoint): | |
# Save only LoRA parameters | |
state_dict = checkpoint["state_dict"] | |
use_lora = any("lora" in name for name in state_dict.keys()) | |
if not use_lora: | |
return | |
for name in list(state_dict.keys()): | |
if "lora" not in name: | |
state_dict.pop(name) | |
def configure_optimizers(self) -> OptimizerLRScheduler: | |
# Get weight decay parameters | |
weight_decay_parameters, other_parameters = [], [] | |
for name, param in self.named_parameters(): | |
if ".bias" in name or "norm.weight" in name or ".embeddings." in name: | |
other_parameters.append(param) | |
else: | |
weight_decay_parameters.append(param) | |
optimizer = self.optimizer_builder( | |
[ | |
{"params": weight_decay_parameters}, | |
{"params": other_parameters, "weight_decay": 0.0}, | |
] | |
) | |
# Print the parameters and their weight decay | |
for i in optimizer.param_groups: | |
log.info( | |
f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters" | |
) | |
lr_scheduler = self.lr_scheduler_builder(optimizer) | |
return { | |
"optimizer": optimizer, | |
"lr_scheduler": { | |
"scheduler": lr_scheduler, | |
"interval": "step", | |
}, | |
} | |
# Copied from https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90 | |
def get_batch_logps( | |
self, | |
logits: torch.FloatTensor, | |
labels: torch.LongTensor, | |
average_log_prob: bool = False, | |
) -> torch.FloatTensor: | |
"""Compute the log probabilities of the given labels under the given logits. | |
Args: | |
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size) | |
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size) | |
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. | |
Returns: | |
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. | |
""" | |
assert logits.shape[:-1] == labels.shape | |
labels = labels.clone() | |
loss_mask = labels != -100 | |
# dummy token; we'll ignore the losses on these tokens later | |
labels[labels == -100] = 0 | |
per_token_logps = torch.gather( | |
logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1) | |
).squeeze(-1) | |
if average_log_prob: | |
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) | |
else: | |
return (per_token_logps * loss_mask).sum(-1) | |
def _step(self, batch, batch_idx, stage: str): | |
is_train = stage == "train" | |
if is_train: | |
# Key part to make lora work | |
# Otherwise the parameters are merged, which lead to incorrect gradients | |
self.model.train() | |
# Do positive and negative samples in the same batch to speed up training | |
labels = batch["labels"] | |
outputs = self.model( | |
inp=batch["inputs"], | |
key_padding_mask=batch["attention_masks"], | |
) | |
token_logits = outputs.token_logits | |
codebook_logits = outputs.codebook_logits | |
# Generate labels | |
base_loss = F.cross_entropy( | |
token_logits.view(-1, token_logits.size(-1)), | |
labels[:, 0].reshape(-1), | |
ignore_index=-100, | |
) | |
codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT | |
semantic_loss = F.cross_entropy( | |
codebook_logits.view(-1, codebook_logits.size(-1)), | |
codebook_labels.reshape(-1), | |
ignore_index=-100, | |
) | |
loss = base_loss + semantic_loss | |
self.log( | |
f"{stage}/loss", | |
loss, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=True, | |
logger=True, | |
sync_dist=not is_train, | |
) | |
self.log( | |
f"{stage}/base_loss", | |
base_loss, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=False, | |
logger=True, | |
sync_dist=not is_train, | |
) | |
self.log( | |
f"{stage}/semantic_loss", | |
semantic_loss, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=False, | |
logger=True, | |
sync_dist=not is_train, | |
) | |
# Top-5 accuracy | |
accuracy = self.get_accuracy(codebook_logits, codebook_labels) | |
self.log( | |
f"{stage}/top_5_accuracy", | |
accuracy, | |
on_step=is_train, | |
on_epoch=not is_train, | |
prog_bar=True, | |
logger=True, | |
sync_dist=not is_train, | |
) | |
return loss | |
def get_accuracy(self, logits, labels): | |
mask = (labels != -100) & (labels != CODEBOOK_PAD_TOKEN_ID) | |
if mask.sum() == 0: | |
return torch.tensor(0.0, device=logits.device) | |
_, indices = logits.topk(5, dim=-1) | |
correct = indices.eq(labels.unsqueeze(-1)) | |
correct[~mask] = 0 | |
correct = correct.sum() | |
accuracy = correct / mask.sum() | |
return accuracy | |
def training_step(self, batch, batch_idx): | |
return self._step(batch, batch_idx, "train") | |
def validation_step(self, batch, batch_idx): | |
return self._step(batch, batch_idx, "val") | |