pathfinder / pages /4_author_search.py
kiyer's picture
bugfix - string input
e75fcb6 verified
raw
history blame
5.1 kB
import os
import datetime
import faiss
import streamlit as st
import feedparser
import urllib
import cloudpickle as cp
import pickle
from urllib.request import urlopen
from summa import summarizer
import numpy as np
import matplotlib.pyplot as plt
import requests
import json
from langchain_openai import AzureOpenAIEmbeddings
from langchain.llms import OpenAI
from langchain_openai import AzureChatOpenAI
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["AZURE_ENDPOINT"] = st.secrets["endpoint1"]
os.environ["OPENAI_API_KEY"] = st.secrets["key1"]
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
embeddings = AzureOpenAIEmbeddings(
deployment="embedding",
model="text-embedding-ada-002",
azure_endpoint=st.secrets["endpoint1"],
)
llm = AzureChatOpenAI(
deployment_name="gpt4_small",
openai_api_version="2023-12-01-preview",
azure_endpoint=st.secrets["endpoint2"],
openai_api_key=st.secrets["key2"],
openai_api_type="azure",
temperature=0.
)
@st.cache_data
def get_feeds_data(url):
# data = cp.load(urlopen(url))
with open(url, "rb") as fp:
data = pickle.load(fp)
st.sidebar.success("Loaded data")
return data
# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"
dateval = "27-Jun-2023"
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
gal_feeds = get_feeds_data(feeds_link)
arxiv_ada_embeddings = get_feeds_data(embed_link)
@st.cache_data
def get_embedding_data(url):
# data = cp.load(urlopen(url))
with open(url, "rb") as fp:
data = pickle.load(fp)
st.sidebar.success("Fetched data from API!")
return data
# url = "https://drive.google.com/uc?export=download&id=1133tynMwsfdR1wxbkFLhbES3FwDWTPjP"
url = "local_files/astro_ph_ga_embedding_"+dateval+".pkl"
e2d = get_embedding_data(url)
# e2d, _, _, _, _ = get_embedding_data(url)
ctr = -1
num_chunks = len(gal_feeds)
ctr = -1
num_chunks = len(gal_feeds)
all_text, all_titles, all_arxivid, all_links, all_authors, all_pubdates, all_old = [], [], [], [], [], [], []
for nc in range(num_chunks):
for i in range(len(gal_feeds[nc].entries)):
text = gal_feeds[nc].entries[i].summary
text = text.replace('\n', ' ')
text = text.replace('\\', '')
all_text.append(text)
all_titles.append(gal_feeds[nc].entries[i].title)
all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
all_links.append(gal_feeds[nc].entries[i].links[1].href)
all_authors.append(gal_feeds[nc].entries[i].authors)
temp = gal_feeds[nc].entries[i].published
datetime_object = datetime.datetime.strptime(temp[0:10]+' '+temp[11:-1], '%Y-%m-%d %H:%M:%S')
all_pubdates.append(datetime_object)
all_old.append((datetime.datetime.now() - datetime_object).days)
def make_author_plot(inputstr, print_summary = False):
authr_list = inputstr.split(', ')
author_flag = np.zeros((len(all_authors),))
ctr = 0
pts = []
for i in range(len(all_authors)):
for j in range(len(all_authors[i])):
for k in range(len(authr_list)):
authr = authr_list[k]
if authr.lower() in all_authors[i][j]['name'].lower():
author_flag[i] = 1
ctr = ctr+1
printstr = str(ctr)+'. [age= %.1f yr, x: %.1f, y: %.1f]' %(all_old[i]/365,e2d[i,0], e2d[i,1])+' name: '+all_authors[i][j]['name']
pts.append(printstr)
pts.append('Paper title: ' + all_titles[i])
else:
continue
print(np.sum(author_flag))
author_flag = author_flag.astype(bool)
fig = plt.figure(figsize=(10.8,9.))
plt.scatter(e2d[0:,0], e2d[0:,1],s=1,color='k',alpha=0.3)
plt.scatter(e2d[0:,0][author_flag], e2d[0:,1][author_flag],
s=100,c=np.array(all_old)[author_flag]/365,alpha=1.0, cmap='coolwarm')
clbr = plt.colorbar(); clbr.set_label('lookback time [years]',fontsize=18)
tempx = plt.xlim(); tempy = plt.ylim()
plt.title('Author: '+authr,fontsize=18,fontweight='bold')
st.pyplot(fig)
if print_summary == True:
st.markdown('---')
for i in range(len(pts)):
st.markdown(pts[i])
return
st.title('Author search')
st.markdown('[Includes papers up to: `'+dateval+'`]')
st.markdown('Trace the location and trajectory of a researcher in the astro-ph.GA manifold.')
st.markdown('The current text matching is exact (not case sensitive), so look at the printed summaries below to refine your input string. If you have multiple aliases by which you publish, separate the inputs with a comma followed by a space like in the example below.')
query = st.text_input('Author name:',
value="Kartheik Iyer, Kartheik G. Iyer, K. G. Iyer")
make_author_plot(query, print_summary=True)