|
import torch |
|
from typing import Optional |
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
""" |
|
Initialize the weights of a module. |
|
|
|
Args: |
|
m: The module to initialize. |
|
mean: The mean of the normal distribution. |
|
std: The standard deviation of the normal distribution. |
|
""" |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
m.weight.data.normal_(mean, std) |
|
|
|
|
|
def get_padding(kernel_size, dilation=1): |
|
""" |
|
Calculate the padding needed for a convolution. |
|
|
|
Args: |
|
kernel_size: The size of the kernel. |
|
dilation: The dilation of the convolution. |
|
""" |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
|
|
def convert_pad_shape(pad_shape): |
|
""" |
|
Convert the pad shape to a list of integers. |
|
|
|
Args: |
|
pad_shape: The pad shape.. |
|
""" |
|
l = pad_shape[::-1] |
|
pad_shape = [item for sublist in l for item in sublist] |
|
return pad_shape |
|
|
|
|
|
def slice_segments( |
|
x: torch.Tensor, ids_str: torch.Tensor, segment_size: int = 4, dim: int = 2 |
|
): |
|
""" |
|
Slice segments from a tensor, handling tensors with different numbers of dimensions. |
|
|
|
Args: |
|
x (torch.Tensor): The tensor to slice. |
|
ids_str (torch.Tensor): The starting indices of the segments. |
|
segment_size (int, optional): The size of each segment. Defaults to 4. |
|
dim (int, optional): The dimension to slice across (2D or 3D tensors). Defaults to 2. |
|
""" |
|
if dim == 2: |
|
ret = torch.zeros_like(x[:, :segment_size]) |
|
elif dim == 3: |
|
ret = torch.zeros_like(x[:, :, :segment_size]) |
|
|
|
for i in range(x.size(0)): |
|
idx_str = ids_str[i].item() |
|
idx_end = idx_str + segment_size |
|
if dim == 2: |
|
ret[i] = x[i, idx_str:idx_end] |
|
else: |
|
ret[i] = x[i, :, idx_str:idx_end] |
|
|
|
return ret |
|
|
|
|
|
def rand_slice_segments(x, x_lengths=None, segment_size=4): |
|
""" |
|
Randomly slice segments from a tensor. |
|
|
|
Args: |
|
x: The tensor to slice. |
|
x_lengths: The lengths of the sequences. |
|
segment_size: The size of each segment. |
|
""" |
|
b, d, t = x.size() |
|
if x_lengths is None: |
|
x_lengths = t |
|
ids_str_max = x_lengths - segment_size + 1 |
|
ids_str = (torch.rand([b], device=x.device) * ids_str_max).to(dtype=torch.long) |
|
ret = slice_segments(x, ids_str, segment_size, dim=3) |
|
return ret, ids_str |
|
|
|
|
|
@torch.jit.script |
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): |
|
""" |
|
Fused add tanh sigmoid multiply operation. |
|
|
|
Args: |
|
input_a: The first input tensor. |
|
input_b: The second input tensor. |
|
n_channels: The number of channels. |
|
""" |
|
n_channels_int = n_channels[0] |
|
in_act = input_a + input_b |
|
t_act = torch.tanh(in_act[:, :n_channels_int, :]) |
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) |
|
acts = t_act * s_act |
|
return acts |
|
|
|
|
|
def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None): |
|
""" |
|
Generate a sequence mask. |
|
|
|
Args: |
|
length: The lengths of the sequences. |
|
max_length: The maximum length of the sequences. |
|
""" |
|
if max_length is None: |
|
max_length = length.max() |
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device) |
|
return x.unsqueeze(0) < length.unsqueeze(1) |
|
|