|
import os |
|
import sys |
|
import json |
|
import argparse |
|
import subprocess |
|
from functools import lru_cache |
|
from distutils.util import strtobool |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
|
|
current_script_directory = os.path.dirname(os.path.realpath(__file__)) |
|
logs_path = os.path.join(current_script_directory, "logs") |
|
|
|
from rvc.lib.tools.prerequisites_download import prequisites_download_pipeline |
|
from rvc.train.process.model_blender import model_blender |
|
from rvc.train.process.model_information import model_information |
|
from rvc.lib.tools.analyzer import analyze_audio |
|
from rvc.lib.tools.launch_tensorboard import launch_tensorboard_pipeline |
|
from rvc.lib.tools.model_download import model_download_pipeline |
|
|
|
python = sys.executable |
|
|
|
|
|
|
|
@lru_cache(maxsize=1) |
|
def load_voices_data(): |
|
with open( |
|
os.path.join("rvc", "lib", "tools", "tts_voices.json"), "r", encoding="utf-8" |
|
) as file: |
|
return json.load(file) |
|
|
|
|
|
voices_data = load_voices_data() |
|
locales = list({voice["ShortName"] for voice in voices_data}) |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def import_voice_converter(): |
|
from rvc.infer.infer import VoiceConverter |
|
|
|
return VoiceConverter() |
|
|
|
|
|
@lru_cache(maxsize=1) |
|
def get_config(): |
|
from rvc.configs.config import Config |
|
|
|
return Config() |
|
|
|
|
|
|
|
def run_infer_script( |
|
pitch: int, |
|
filter_radius: int, |
|
index_rate: float, |
|
volume_envelope: int, |
|
protect: float, |
|
hop_length: int, |
|
f0_method: str, |
|
input_path: str, |
|
output_path: str, |
|
pth_path: str, |
|
index_path: str, |
|
split_audio: bool, |
|
f0_autotune: bool, |
|
f0_autotune_strength: float, |
|
clean_audio: bool, |
|
clean_strength: float, |
|
export_format: str, |
|
f0_file: str, |
|
embedder_model: str, |
|
embedder_model_custom: str = None, |
|
formant_shifting: bool = False, |
|
formant_qfrency: float = 1.0, |
|
formant_timbre: float = 1.0, |
|
post_process: bool = False, |
|
reverb: bool = False, |
|
pitch_shift: bool = False, |
|
limiter: bool = False, |
|
gain: bool = False, |
|
distortion: bool = False, |
|
chorus: bool = False, |
|
bitcrush: bool = False, |
|
clipping: bool = False, |
|
compressor: bool = False, |
|
delay: bool = False, |
|
reverb_room_size: float = 0.5, |
|
reverb_damping: float = 0.5, |
|
reverb_wet_gain: float = 0.5, |
|
reverb_dry_gain: float = 0.5, |
|
reverb_width: float = 0.5, |
|
reverb_freeze_mode: float = 0.5, |
|
pitch_shift_semitones: float = 0.0, |
|
limiter_threshold: float = -6, |
|
limiter_release_time: float = 0.01, |
|
gain_db: float = 0.0, |
|
distortion_gain: float = 25, |
|
chorus_rate: float = 1.0, |
|
chorus_depth: float = 0.25, |
|
chorus_center_delay: float = 7, |
|
chorus_feedback: float = 0.0, |
|
chorus_mix: float = 0.5, |
|
bitcrush_bit_depth: int = 8, |
|
clipping_threshold: float = -6, |
|
compressor_threshold: float = 0, |
|
compressor_ratio: float = 1, |
|
compressor_attack: float = 1.0, |
|
compressor_release: float = 100, |
|
delay_seconds: float = 0.5, |
|
delay_feedback: float = 0.0, |
|
delay_mix: float = 0.5, |
|
sid: int = 0, |
|
): |
|
kwargs = { |
|
"audio_input_path": input_path, |
|
"audio_output_path": output_path, |
|
"model_path": pth_path, |
|
"index_path": index_path, |
|
"pitch": pitch, |
|
"filter_radius": filter_radius, |
|
"index_rate": index_rate, |
|
"volume_envelope": volume_envelope, |
|
"protect": protect, |
|
"hop_length": hop_length, |
|
"f0_method": f0_method, |
|
"pth_path": pth_path, |
|
"index_path": index_path, |
|
"split_audio": split_audio, |
|
"f0_autotune": f0_autotune, |
|
"f0_autotune_strength": f0_autotune_strength, |
|
"clean_audio": clean_audio, |
|
"clean_strength": clean_strength, |
|
"export_format": export_format, |
|
"f0_file": f0_file, |
|
"embedder_model": embedder_model, |
|
"embedder_model_custom": embedder_model_custom, |
|
"post_process": post_process, |
|
"formant_shifting": formant_shifting, |
|
"formant_qfrency": formant_qfrency, |
|
"formant_timbre": formant_timbre, |
|
"reverb": reverb, |
|
"pitch_shift": pitch_shift, |
|
"limiter": limiter, |
|
"gain": gain, |
|
"distortion": distortion, |
|
"chorus": chorus, |
|
"bitcrush": bitcrush, |
|
"clipping": clipping, |
|
"compressor": compressor, |
|
"delay": delay, |
|
"reverb_room_size": reverb_room_size, |
|
"reverb_damping": reverb_damping, |
|
"reverb_wet_level": reverb_wet_gain, |
|
"reverb_dry_level": reverb_dry_gain, |
|
"reverb_width": reverb_width, |
|
"reverb_freeze_mode": reverb_freeze_mode, |
|
"pitch_shift_semitones": pitch_shift_semitones, |
|
"limiter_threshold": limiter_threshold, |
|
"limiter_release": limiter_release_time, |
|
"gain_db": gain_db, |
|
"distortion_gain": distortion_gain, |
|
"chorus_rate": chorus_rate, |
|
"chorus_depth": chorus_depth, |
|
"chorus_delay": chorus_center_delay, |
|
"chorus_feedback": chorus_feedback, |
|
"chorus_mix": chorus_mix, |
|
"bitcrush_bit_depth": bitcrush_bit_depth, |
|
"clipping_threshold": clipping_threshold, |
|
"compressor_threshold": compressor_threshold, |
|
"compressor_ratio": compressor_ratio, |
|
"compressor_attack": compressor_attack, |
|
"compressor_release": compressor_release, |
|
"delay_seconds": delay_seconds, |
|
"delay_feedback": delay_feedback, |
|
"delay_mix": delay_mix, |
|
"sid": sid, |
|
} |
|
infer_pipeline = import_voice_converter() |
|
infer_pipeline.convert_audio( |
|
**kwargs, |
|
) |
|
return f"File {input_path} inferred successfully.", output_path.replace( |
|
".wav", f".{export_format.lower()}" |
|
) |
|
|
|
|
|
|
|
def run_batch_infer_script( |
|
pitch: int, |
|
filter_radius: int, |
|
index_rate: float, |
|
volume_envelope: int, |
|
protect: float, |
|
hop_length: int, |
|
f0_method: str, |
|
input_folder: str, |
|
output_folder: str, |
|
pth_path: str, |
|
index_path: str, |
|
split_audio: bool, |
|
f0_autotune: bool, |
|
f0_autotune_strength: float, |
|
clean_audio: bool, |
|
clean_strength: float, |
|
export_format: str, |
|
f0_file: str, |
|
embedder_model: str, |
|
embedder_model_custom: str = None, |
|
formant_shifting: bool = False, |
|
formant_qfrency: float = 1.0, |
|
formant_timbre: float = 1.0, |
|
post_process: bool = False, |
|
reverb: bool = False, |
|
pitch_shift: bool = False, |
|
limiter: bool = False, |
|
gain: bool = False, |
|
distortion: bool = False, |
|
chorus: bool = False, |
|
bitcrush: bool = False, |
|
clipping: bool = False, |
|
compressor: bool = False, |
|
delay: bool = False, |
|
reverb_room_size: float = 0.5, |
|
reverb_damping: float = 0.5, |
|
reverb_wet_gain: float = 0.5, |
|
reverb_dry_gain: float = 0.5, |
|
reverb_width: float = 0.5, |
|
reverb_freeze_mode: float = 0.5, |
|
pitch_shift_semitones: float = 0.0, |
|
limiter_threshold: float = -6, |
|
limiter_release_time: float = 0.01, |
|
gain_db: float = 0.0, |
|
distortion_gain: float = 25, |
|
chorus_rate: float = 1.0, |
|
chorus_depth: float = 0.25, |
|
chorus_center_delay: float = 7, |
|
chorus_feedback: float = 0.0, |
|
chorus_mix: float = 0.5, |
|
bitcrush_bit_depth: int = 8, |
|
clipping_threshold: float = -6, |
|
compressor_threshold: float = 0, |
|
compressor_ratio: float = 1, |
|
compressor_attack: float = 1.0, |
|
compressor_release: float = 100, |
|
delay_seconds: float = 0.5, |
|
delay_feedback: float = 0.0, |
|
delay_mix: float = 0.5, |
|
sid: int = 0, |
|
): |
|
kwargs = { |
|
"audio_input_paths": input_folder, |
|
"audio_output_path": output_folder, |
|
"model_path": pth_path, |
|
"index_path": index_path, |
|
"pitch": pitch, |
|
"filter_radius": filter_radius, |
|
"index_rate": index_rate, |
|
"volume_envelope": volume_envelope, |
|
"protect": protect, |
|
"hop_length": hop_length, |
|
"f0_method": f0_method, |
|
"pth_path": pth_path, |
|
"index_path": index_path, |
|
"split_audio": split_audio, |
|
"f0_autotune": f0_autotune, |
|
"f0_autotune_strength": f0_autotune_strength, |
|
"clean_audio": clean_audio, |
|
"clean_strength": clean_strength, |
|
"export_format": export_format, |
|
"f0_file": f0_file, |
|
"embedder_model": embedder_model, |
|
"embedder_model_custom": embedder_model_custom, |
|
"post_process": post_process, |
|
"formant_shifting": formant_shifting, |
|
"formant_qfrency": formant_qfrency, |
|
"formant_timbre": formant_timbre, |
|
"reverb": reverb, |
|
"pitch_shift": pitch_shift, |
|
"limiter": limiter, |
|
"gain": gain, |
|
"distortion": distortion, |
|
"chorus": chorus, |
|
"bitcrush": bitcrush, |
|
"clipping": clipping, |
|
"compressor": compressor, |
|
"delay": delay, |
|
"reverb_room_size": reverb_room_size, |
|
"reverb_damping": reverb_damping, |
|
"reverb_wet_level": reverb_wet_gain, |
|
"reverb_dry_level": reverb_dry_gain, |
|
"reverb_width": reverb_width, |
|
"reverb_freeze_mode": reverb_freeze_mode, |
|
"pitch_shift_semitones": pitch_shift_semitones, |
|
"limiter_threshold": limiter_threshold, |
|
"limiter_release": limiter_release_time, |
|
"gain_db": gain_db, |
|
"distortion_gain": distortion_gain, |
|
"chorus_rate": chorus_rate, |
|
"chorus_depth": chorus_depth, |
|
"chorus_delay": chorus_center_delay, |
|
"chorus_feedback": chorus_feedback, |
|
"chorus_mix": chorus_mix, |
|
"bitcrush_bit_depth": bitcrush_bit_depth, |
|
"clipping_threshold": clipping_threshold, |
|
"compressor_threshold": compressor_threshold, |
|
"compressor_ratio": compressor_ratio, |
|
"compressor_attack": compressor_attack, |
|
"compressor_release": compressor_release, |
|
"delay_seconds": delay_seconds, |
|
"delay_feedback": delay_feedback, |
|
"delay_mix": delay_mix, |
|
"sid": sid, |
|
} |
|
infer_pipeline = import_voice_converter() |
|
infer_pipeline.convert_audio_batch( |
|
**kwargs, |
|
) |
|
|
|
return f"Files from {input_folder} inferred successfully." |
|
|
|
|
|
|
|
def run_tts_script( |
|
tts_file: str, |
|
tts_text: str, |
|
tts_voice: str, |
|
tts_rate: int, |
|
pitch: int, |
|
filter_radius: int, |
|
index_rate: float, |
|
volume_envelope: int, |
|
protect: float, |
|
hop_length: int, |
|
f0_method: str, |
|
output_tts_path: str, |
|
output_rvc_path: str, |
|
pth_path: str, |
|
index_path: str, |
|
split_audio: bool, |
|
f0_autotune: bool, |
|
f0_autotune_strength: float, |
|
clean_audio: bool, |
|
clean_strength: float, |
|
export_format: str, |
|
f0_file: str, |
|
embedder_model: str, |
|
embedder_model_custom: str = None, |
|
sid: int = 0, |
|
): |
|
|
|
tts_script_path = os.path.join("rvc", "lib", "tools", "tts.py") |
|
|
|
if os.path.exists(output_tts_path): |
|
os.remove(output_tts_path) |
|
|
|
command_tts = [ |
|
*map( |
|
str, |
|
[ |
|
python, |
|
tts_script_path, |
|
tts_file, |
|
tts_text, |
|
tts_voice, |
|
tts_rate, |
|
output_tts_path, |
|
], |
|
), |
|
] |
|
subprocess.run(command_tts) |
|
infer_pipeline = import_voice_converter() |
|
infer_pipeline.convert_audio( |
|
pitch=pitch, |
|
filter_radius=filter_radius, |
|
index_rate=index_rate, |
|
volume_envelope=volume_envelope, |
|
protect=protect, |
|
hop_length=hop_length, |
|
f0_method=f0_method, |
|
audio_input_path=output_tts_path, |
|
audio_output_path=output_rvc_path, |
|
model_path=pth_path, |
|
index_path=index_path, |
|
split_audio=split_audio, |
|
f0_autotune=f0_autotune, |
|
f0_autotune_strength=f0_autotune_strength, |
|
clean_audio=clean_audio, |
|
clean_strength=clean_strength, |
|
export_format=export_format, |
|
f0_file=f0_file, |
|
embedder_model=embedder_model, |
|
embedder_model_custom=embedder_model_custom, |
|
sid=sid, |
|
formant_shifting=None, |
|
formant_qfrency=None, |
|
formant_timbre=None, |
|
post_process=None, |
|
reverb=None, |
|
pitch_shift=None, |
|
limiter=None, |
|
gain=None, |
|
distortion=None, |
|
chorus=None, |
|
bitcrush=None, |
|
clipping=None, |
|
compressor=None, |
|
delay=None, |
|
sliders=None, |
|
) |
|
|
|
return f"Text {tts_text} synthesized successfully.", output_rvc_path.replace( |
|
".wav", f".{export_format.lower()}" |
|
) |
|
|
|
|
|
|
|
def run_preprocess_script( |
|
model_name: str, |
|
dataset_path: str, |
|
sample_rate: int, |
|
cpu_cores: int, |
|
cut_preprocess: str, |
|
process_effects: bool, |
|
noise_reduction: bool, |
|
clean_strength: float, |
|
chunk_len: float, |
|
overlap_len: float, |
|
): |
|
preprocess_script_path = os.path.join("rvc", "train", "preprocess", "preprocess.py") |
|
command = [ |
|
python, |
|
preprocess_script_path, |
|
*map( |
|
str, |
|
[ |
|
os.path.join(logs_path, model_name), |
|
dataset_path, |
|
sample_rate, |
|
cpu_cores, |
|
cut_preprocess, |
|
process_effects, |
|
noise_reduction, |
|
clean_strength, |
|
chunk_len, |
|
overlap_len, |
|
], |
|
), |
|
] |
|
subprocess.run(command) |
|
return f"Model {model_name} preprocessed successfully." |
|
|
|
|
|
|
|
def run_extract_script( |
|
model_name: str, |
|
f0_method: str, |
|
hop_length: int, |
|
cpu_cores: int, |
|
gpu: int, |
|
sample_rate: int, |
|
embedder_model: str, |
|
embedder_model_custom: str = None, |
|
include_mutes: int = 2, |
|
): |
|
|
|
model_path = os.path.join(logs_path, model_name) |
|
extract = os.path.join("rvc", "train", "extract", "extract.py") |
|
|
|
command_1 = [ |
|
python, |
|
extract, |
|
*map( |
|
str, |
|
[ |
|
model_path, |
|
f0_method, |
|
hop_length, |
|
cpu_cores, |
|
gpu, |
|
sample_rate, |
|
embedder_model, |
|
embedder_model_custom, |
|
include_mutes, |
|
], |
|
), |
|
] |
|
|
|
subprocess.run(command_1) |
|
|
|
return f"Model {model_name} extracted successfully." |
|
|
|
|
|
|
|
def run_train_script( |
|
model_name: str, |
|
save_every_epoch: int, |
|
save_only_latest: bool, |
|
save_every_weights: bool, |
|
total_epoch: int, |
|
sample_rate: int, |
|
batch_size: int, |
|
gpu: int, |
|
overtraining_detector: bool, |
|
overtraining_threshold: int, |
|
pretrained: bool, |
|
cleanup: bool, |
|
index_algorithm: str = "Auto", |
|
cache_data_in_gpu: bool = False, |
|
custom_pretrained: bool = False, |
|
g_pretrained_path: str = None, |
|
d_pretrained_path: str = None, |
|
vocoder: str = "HiFi-GAN", |
|
checkpointing: bool = False, |
|
): |
|
|
|
if pretrained == True: |
|
from rvc.lib.tools.pretrained_selector import pretrained_selector |
|
|
|
if custom_pretrained == False: |
|
pg, pd = pretrained_selector(str(vocoder), int(sample_rate)) |
|
else: |
|
if g_pretrained_path is None or d_pretrained_path is None: |
|
raise ValueError( |
|
"Please provide the path to the pretrained G and D models." |
|
) |
|
pg, pd = g_pretrained_path, d_pretrained_path |
|
else: |
|
pg, pd = "", "" |
|
|
|
train_script_path = os.path.join("rvc", "train", "train.py") |
|
command = [ |
|
python, |
|
train_script_path, |
|
*map( |
|
str, |
|
[ |
|
model_name, |
|
save_every_epoch, |
|
total_epoch, |
|
pg, |
|
pd, |
|
gpu, |
|
batch_size, |
|
sample_rate, |
|
save_only_latest, |
|
save_every_weights, |
|
cache_data_in_gpu, |
|
overtraining_detector, |
|
overtraining_threshold, |
|
cleanup, |
|
vocoder, |
|
checkpointing, |
|
], |
|
), |
|
] |
|
subprocess.run(command) |
|
run_index_script(model_name, index_algorithm) |
|
return f"Model {model_name} trained successfully." |
|
|
|
|
|
|
|
def run_index_script(model_name: str, index_algorithm: str): |
|
index_script_path = os.path.join("rvc", "train", "process", "extract_index.py") |
|
command = [ |
|
python, |
|
index_script_path, |
|
os.path.join(logs_path, model_name), |
|
index_algorithm, |
|
] |
|
|
|
subprocess.run(command) |
|
return f"Index file for {model_name} generated successfully." |
|
|
|
|
|
|
|
def run_model_information_script(pth_path: str): |
|
print(model_information(pth_path)) |
|
return model_information(pth_path) |
|
|
|
|
|
|
|
def run_model_blender_script( |
|
model_name: str, pth_path_1: str, pth_path_2: str, ratio: float |
|
): |
|
message, model_blended = model_blender(model_name, pth_path_1, pth_path_2, ratio) |
|
return message, model_blended |
|
|
|
|
|
|
|
def run_tensorboard_script(): |
|
launch_tensorboard_pipeline() |
|
|
|
|
|
|
|
def run_download_script(model_link: str): |
|
model_download_pipeline(model_link) |
|
return f"Model downloaded successfully." |
|
|
|
|
|
|
|
def run_prerequisites_script( |
|
pretraineds_hifigan: bool, |
|
models: bool, |
|
exe: bool, |
|
): |
|
prequisites_download_pipeline( |
|
pretraineds_hifigan, |
|
models, |
|
exe, |
|
) |
|
return "Prerequisites installed successfully." |
|
|
|
|
|
|
|
def run_audio_analyzer_script( |
|
input_path: str, save_plot_path: str = "logs/audio_analysis.png" |
|
): |
|
audio_info, plot_path = analyze_audio(input_path, save_plot_path) |
|
print( |
|
f"Audio info of {input_path}: {audio_info}", |
|
f"Audio file {input_path} analyzed successfully. Plot saved at: {plot_path}", |
|
) |
|
return audio_info, plot_path |
|
|
|
|
|
|
|
def parse_arguments(): |
|
parser = argparse.ArgumentParser( |
|
description="Run the main.py script with specific parameters." |
|
) |
|
subparsers = parser.add_subparsers( |
|
title="subcommands", dest="mode", help="Choose a mode" |
|
) |
|
|
|
|
|
infer_parser = subparsers.add_parser("infer", help="Run inference") |
|
pitch_description = ( |
|
"Set the pitch of the audio. Higher values result in a higher pitch." |
|
) |
|
infer_parser.add_argument( |
|
"--pitch", |
|
type=int, |
|
help=pitch_description, |
|
choices=range(-24, 25), |
|
default=0, |
|
) |
|
filter_radius_description = "Apply median filtering to the extracted pitch values if this value is greater than or equal to three. This can help reduce breathiness in the output audio." |
|
infer_parser.add_argument( |
|
"--filter_radius", |
|
type=int, |
|
help=filter_radius_description, |
|
choices=range(11), |
|
default=3, |
|
) |
|
index_rate_description = "Control the influence of the index file on the output. Higher values mean stronger influence. Lower values can help reduce artifacts but may result in less accurate voice cloning." |
|
infer_parser.add_argument( |
|
"--index_rate", |
|
type=float, |
|
help=index_rate_description, |
|
choices=[i / 100.0 for i in range(0, 101)], |
|
default=0.3, |
|
) |
|
volume_envelope_description = "Control the blending of the output's volume envelope. A value of 1 means the output envelope is fully used." |
|
infer_parser.add_argument( |
|
"--volume_envelope", |
|
type=float, |
|
help=volume_envelope_description, |
|
choices=[i / 100.0 for i in range(0, 101)], |
|
default=1, |
|
) |
|
protect_description = "Protect consonants and breathing sounds from artifacts. A value of 0.5 offers the strongest protection, while lower values may reduce the protection level but potentially mitigate the indexing effect." |
|
infer_parser.add_argument( |
|
"--protect", |
|
type=float, |
|
help=protect_description, |
|
choices=[i / 1000.0 for i in range(0, 501)], |
|
default=0.33, |
|
) |
|
hop_length_description = "Only applicable for the Crepe pitch extraction method. Determines the time it takes for the system to react to a significant pitch change. Smaller values require more processing time but can lead to better pitch accuracy." |
|
infer_parser.add_argument( |
|
"--hop_length", |
|
type=int, |
|
help=hop_length_description, |
|
choices=range(1, 513), |
|
default=128, |
|
) |
|
f0_method_description = "Choose the pitch extraction algorithm for the conversion. 'rmvpe' is the default and generally recommended." |
|
infer_parser.add_argument( |
|
"--f0_method", |
|
type=str, |
|
help=f0_method_description, |
|
choices=[ |
|
"crepe", |
|
"crepe-tiny", |
|
"rmvpe", |
|
"fcpe", |
|
"hybrid[crepe+rmvpe]", |
|
"hybrid[crepe+fcpe]", |
|
"hybrid[rmvpe+fcpe]", |
|
"hybrid[crepe+rmvpe+fcpe]", |
|
], |
|
default="rmvpe", |
|
) |
|
infer_parser.add_argument( |
|
"--input_path", |
|
type=str, |
|
help="Full path to the input audio file.", |
|
required=True, |
|
) |
|
infer_parser.add_argument( |
|
"--output_path", |
|
type=str, |
|
help="Full path to the output audio file.", |
|
required=True, |
|
) |
|
pth_path_description = "Full path to the RVC model file (.pth)." |
|
infer_parser.add_argument( |
|
"--pth_path", type=str, help=pth_path_description, required=True |
|
) |
|
index_path_description = "Full path to the index file (.index)." |
|
infer_parser.add_argument( |
|
"--index_path", type=str, help=index_path_description, required=True |
|
) |
|
split_audio_description = "Split the audio into smaller segments before inference. This can improve the quality of the output for longer audio files." |
|
infer_parser.add_argument( |
|
"--split_audio", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=split_audio_description, |
|
default=False, |
|
) |
|
f0_autotune_description = "Apply a light autotune to the inferred audio. Particularly useful for singing voice conversions." |
|
infer_parser.add_argument( |
|
"--f0_autotune", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=f0_autotune_description, |
|
default=False, |
|
) |
|
f0_autotune_strength_description = "Set the autotune strength - the more you increase it the more it will snap to the chromatic grid." |
|
infer_parser.add_argument( |
|
"--f0_autotune_strength", |
|
type=float, |
|
help=f0_autotune_strength_description, |
|
choices=[(i / 10) for i in range(11)], |
|
default=1.0, |
|
) |
|
clean_audio_description = "Clean the output audio using noise reduction algorithms. Recommended for speech conversions." |
|
infer_parser.add_argument( |
|
"--clean_audio", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=clean_audio_description, |
|
default=False, |
|
) |
|
clean_strength_description = "Adjust the intensity of the audio cleaning process. Higher values result in stronger cleaning, but may lead to a more compressed sound." |
|
infer_parser.add_argument( |
|
"--clean_strength", |
|
type=float, |
|
help=clean_strength_description, |
|
choices=[(i / 10) for i in range(11)], |
|
default=0.7, |
|
) |
|
export_format_description = "Select the desired output audio format." |
|
infer_parser.add_argument( |
|
"--export_format", |
|
type=str, |
|
help=export_format_description, |
|
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], |
|
default="WAV", |
|
) |
|
embedder_model_description = ( |
|
"Choose the model used for generating speaker embeddings." |
|
) |
|
infer_parser.add_argument( |
|
"--embedder_model", |
|
type=str, |
|
help=embedder_model_description, |
|
choices=[ |
|
"contentvec", |
|
"chinese-hubert-base", |
|
"japanese-hubert-base", |
|
"korean-hubert-base", |
|
"custom", |
|
], |
|
default="contentvec", |
|
) |
|
embedder_model_custom_description = "Specify the path to a custom model for speaker embedding. Only applicable if 'embedder_model' is set to 'custom'." |
|
infer_parser.add_argument( |
|
"--embedder_model_custom", |
|
type=str, |
|
help=embedder_model_custom_description, |
|
default=None, |
|
) |
|
f0_file_description = "Full path to an external F0 file (.f0). This allows you to use pre-computed pitch values for the input audio." |
|
infer_parser.add_argument( |
|
"--f0_file", |
|
type=str, |
|
help=f0_file_description, |
|
default=None, |
|
) |
|
formant_shifting_description = "Apply formant shifting to the input audio. This can help adjust the timbre of the voice." |
|
infer_parser.add_argument( |
|
"--formant_shifting", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=formant_shifting_description, |
|
default=False, |
|
required=False, |
|
) |
|
formant_qfrency_description = "Control the frequency of the formant shifting effect. Higher values result in a more pronounced effect." |
|
infer_parser.add_argument( |
|
"--formant_qfrency", |
|
type=float, |
|
help=formant_qfrency_description, |
|
default=1.0, |
|
required=False, |
|
) |
|
formant_timbre_description = "Control the timbre of the formant shifting effect. Higher values result in a more pronounced effect." |
|
infer_parser.add_argument( |
|
"--formant_timbre", |
|
type=float, |
|
help=formant_timbre_description, |
|
default=1.0, |
|
required=False, |
|
) |
|
sid_description = "Speaker ID for multi-speaker models." |
|
infer_parser.add_argument( |
|
"--sid", |
|
type=int, |
|
help=sid_description, |
|
default=0, |
|
required=False, |
|
) |
|
post_process_description = "Apply post-processing effects to the output audio." |
|
infer_parser.add_argument( |
|
"--post_process", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=post_process_description, |
|
default=False, |
|
required=False, |
|
) |
|
reverb_description = "Apply reverb effect to the output audio." |
|
infer_parser.add_argument( |
|
"--reverb", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=reverb_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
pitch_shift_description = "Apply pitch shifting effect to the output audio." |
|
infer_parser.add_argument( |
|
"--pitch_shift", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=pitch_shift_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
limiter_description = "Apply limiter effect to the output audio." |
|
infer_parser.add_argument( |
|
"--limiter", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=limiter_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
gain_description = "Apply gain effect to the output audio." |
|
infer_parser.add_argument( |
|
"--gain", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=gain_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
distortion_description = "Apply distortion effect to the output audio." |
|
infer_parser.add_argument( |
|
"--distortion", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=distortion_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
chorus_description = "Apply chorus effect to the output audio." |
|
infer_parser.add_argument( |
|
"--chorus", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=chorus_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
bitcrush_description = "Apply bitcrush effect to the output audio." |
|
infer_parser.add_argument( |
|
"--bitcrush", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=bitcrush_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
clipping_description = "Apply clipping effect to the output audio." |
|
infer_parser.add_argument( |
|
"--clipping", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=clipping_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
compressor_description = "Apply compressor effect to the output audio." |
|
infer_parser.add_argument( |
|
"--compressor", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=compressor_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
delay_description = "Apply delay effect to the output audio." |
|
infer_parser.add_argument( |
|
"--delay", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=delay_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
reverb_room_size_description = "Control the room size of the reverb effect. Higher values result in a larger room size." |
|
infer_parser.add_argument( |
|
"--reverb_room_size", |
|
type=float, |
|
help=reverb_room_size_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
reverb_damping_description = "Control the damping of the reverb effect. Higher values result in a more damped sound." |
|
infer_parser.add_argument( |
|
"--reverb_damping", |
|
type=float, |
|
help=reverb_damping_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
reverb_wet_gain_description = "Control the wet gain of the reverb effect. Higher values result in a stronger reverb effect." |
|
infer_parser.add_argument( |
|
"--reverb_wet_gain", |
|
type=float, |
|
help=reverb_wet_gain_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
reverb_dry_gain_description = "Control the dry gain of the reverb effect. Higher values result in a stronger dry signal." |
|
infer_parser.add_argument( |
|
"--reverb_dry_gain", |
|
type=float, |
|
help=reverb_dry_gain_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
reverb_width_description = "Control the stereo width of the reverb effect. Higher values result in a wider stereo image." |
|
infer_parser.add_argument( |
|
"--reverb_width", |
|
type=float, |
|
help=reverb_width_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
reverb_freeze_mode_description = "Control the freeze mode of the reverb effect. Higher values result in a stronger freeze effect." |
|
infer_parser.add_argument( |
|
"--reverb_freeze_mode", |
|
type=float, |
|
help=reverb_freeze_mode_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
pitch_shift_semitones_description = "Control the pitch shift in semitones. Positive values increase the pitch, while negative values decrease it." |
|
infer_parser.add_argument( |
|
"--pitch_shift_semitones", |
|
type=float, |
|
help=pitch_shift_semitones_description, |
|
default=0.0, |
|
required=False, |
|
) |
|
|
|
limiter_threshold_description = "Control the threshold of the limiter effect. Higher values result in a stronger limiting effect." |
|
infer_parser.add_argument( |
|
"--limiter_threshold", |
|
type=float, |
|
help=limiter_threshold_description, |
|
default=-6, |
|
required=False, |
|
) |
|
|
|
limiter_release_time_description = "Control the release time of the limiter effect. Higher values result in a longer release time." |
|
infer_parser.add_argument( |
|
"--limiter_release_time", |
|
type=float, |
|
help=limiter_release_time_description, |
|
default=0.01, |
|
required=False, |
|
) |
|
|
|
gain_db_description = "Control the gain in decibels. Positive values increase the gain, while negative values decrease it." |
|
infer_parser.add_argument( |
|
"--gain_db", |
|
type=float, |
|
help=gain_db_description, |
|
default=0.0, |
|
required=False, |
|
) |
|
|
|
distortion_gain_description = "Control the gain of the distortion effect. Higher values result in a stronger distortion effect." |
|
infer_parser.add_argument( |
|
"--distortion_gain", |
|
type=float, |
|
help=distortion_gain_description, |
|
default=25, |
|
required=False, |
|
) |
|
|
|
chorus_rate_description = "Control the rate of the chorus effect. Higher values result in a faster chorus effect." |
|
infer_parser.add_argument( |
|
"--chorus_rate", |
|
type=float, |
|
help=chorus_rate_description, |
|
default=1.0, |
|
required=False, |
|
) |
|
|
|
chorus_depth_description = "Control the depth of the chorus effect. Higher values result in a stronger chorus effect." |
|
infer_parser.add_argument( |
|
"--chorus_depth", |
|
type=float, |
|
help=chorus_depth_description, |
|
default=0.25, |
|
required=False, |
|
) |
|
|
|
chorus_center_delay_description = "Control the center delay of the chorus effect. Higher values result in a longer center delay." |
|
infer_parser.add_argument( |
|
"--chorus_center_delay", |
|
type=float, |
|
help=chorus_center_delay_description, |
|
default=7, |
|
required=False, |
|
) |
|
|
|
chorus_feedback_description = "Control the feedback of the chorus effect. Higher values result in a stronger feedback effect." |
|
infer_parser.add_argument( |
|
"--chorus_feedback", |
|
type=float, |
|
help=chorus_feedback_description, |
|
default=0.0, |
|
required=False, |
|
) |
|
|
|
chorus_mix_description = "Control the mix of the chorus effect. Higher values result in a stronger chorus effect." |
|
infer_parser.add_argument( |
|
"--chorus_mix", |
|
type=float, |
|
help=chorus_mix_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
bitcrush_bit_depth_description = "Control the bit depth of the bitcrush effect. Higher values result in a stronger bitcrush effect." |
|
infer_parser.add_argument( |
|
"--bitcrush_bit_depth", |
|
type=int, |
|
help=bitcrush_bit_depth_description, |
|
default=8, |
|
required=False, |
|
) |
|
|
|
clipping_threshold_description = "Control the threshold of the clipping effect. Higher values result in a stronger clipping effect." |
|
infer_parser.add_argument( |
|
"--clipping_threshold", |
|
type=float, |
|
help=clipping_threshold_description, |
|
default=-6, |
|
required=False, |
|
) |
|
|
|
compressor_threshold_description = "Control the threshold of the compressor effect. Higher values result in a stronger compressor effect." |
|
infer_parser.add_argument( |
|
"--compressor_threshold", |
|
type=float, |
|
help=compressor_threshold_description, |
|
default=0, |
|
required=False, |
|
) |
|
|
|
compressor_ratio_description = "Control the ratio of the compressor effect. Higher values result in a stronger compressor effect." |
|
infer_parser.add_argument( |
|
"--compressor_ratio", |
|
type=float, |
|
help=compressor_ratio_description, |
|
default=1, |
|
required=False, |
|
) |
|
|
|
compressor_attack_description = "Control the attack of the compressor effect. Higher values result in a stronger compressor effect." |
|
infer_parser.add_argument( |
|
"--compressor_attack", |
|
type=float, |
|
help=compressor_attack_description, |
|
default=1.0, |
|
required=False, |
|
) |
|
|
|
compressor_release_description = "Control the release of the compressor effect. Higher values result in a stronger compressor effect." |
|
infer_parser.add_argument( |
|
"--compressor_release", |
|
type=float, |
|
help=compressor_release_description, |
|
default=100, |
|
required=False, |
|
) |
|
|
|
delay_seconds_description = "Control the delay time in seconds. Higher values result in a longer delay time." |
|
infer_parser.add_argument( |
|
"--delay_seconds", |
|
type=float, |
|
help=delay_seconds_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
delay_feedback_description = "Control the feedback of the delay effect. Higher values result in a stronger feedback effect." |
|
infer_parser.add_argument( |
|
"--delay_feedback", |
|
type=float, |
|
help=delay_feedback_description, |
|
default=0.0, |
|
required=False, |
|
) |
|
delay_mix_description = "Control the mix of the delay effect. Higher values result in a stronger delay effect." |
|
infer_parser.add_argument( |
|
"--delay_mix", |
|
type=float, |
|
help=delay_mix_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
|
|
batch_infer_parser = subparsers.add_parser( |
|
"batch_infer", |
|
help="Run batch inference", |
|
) |
|
batch_infer_parser.add_argument( |
|
"--pitch", |
|
type=int, |
|
help=pitch_description, |
|
choices=range(-24, 25), |
|
default=0, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--filter_radius", |
|
type=int, |
|
help=filter_radius_description, |
|
choices=range(11), |
|
default=3, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--index_rate", |
|
type=float, |
|
help=index_rate_description, |
|
choices=[i / 100.0 for i in range(0, 101)], |
|
default=0.3, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--volume_envelope", |
|
type=float, |
|
help=volume_envelope_description, |
|
choices=[i / 100.0 for i in range(0, 101)], |
|
default=1, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--protect", |
|
type=float, |
|
help=protect_description, |
|
choices=[i / 1000.0 for i in range(0, 501)], |
|
default=0.33, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--hop_length", |
|
type=int, |
|
help=hop_length_description, |
|
choices=range(1, 513), |
|
default=128, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--f0_method", |
|
type=str, |
|
help=f0_method_description, |
|
choices=[ |
|
"crepe", |
|
"crepe-tiny", |
|
"rmvpe", |
|
"fcpe", |
|
"hybrid[crepe+rmvpe]", |
|
"hybrid[crepe+fcpe]", |
|
"hybrid[rmvpe+fcpe]", |
|
"hybrid[crepe+rmvpe+fcpe]", |
|
], |
|
default="rmvpe", |
|
) |
|
batch_infer_parser.add_argument( |
|
"--input_folder", |
|
type=str, |
|
help="Path to the folder containing input audio files.", |
|
required=True, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--output_folder", |
|
type=str, |
|
help="Path to the folder for saving output audio files.", |
|
required=True, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--pth_path", type=str, help=pth_path_description, required=True |
|
) |
|
batch_infer_parser.add_argument( |
|
"--index_path", type=str, help=index_path_description, required=True |
|
) |
|
batch_infer_parser.add_argument( |
|
"--split_audio", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=split_audio_description, |
|
default=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--f0_autotune", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=f0_autotune_description, |
|
default=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--f0_autotune_strength", |
|
type=float, |
|
help=clean_strength_description, |
|
choices=[(i / 10) for i in range(11)], |
|
default=1.0, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--clean_audio", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=clean_audio_description, |
|
default=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--clean_strength", |
|
type=float, |
|
help=clean_strength_description, |
|
choices=[(i / 10) for i in range(11)], |
|
default=0.7, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--export_format", |
|
type=str, |
|
help=export_format_description, |
|
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], |
|
default="WAV", |
|
) |
|
batch_infer_parser.add_argument( |
|
"--embedder_model", |
|
type=str, |
|
help=embedder_model_description, |
|
choices=[ |
|
"contentvec", |
|
"chinese-hubert-base", |
|
"japanese-hubert-base", |
|
"korean-hubert-base", |
|
"custom", |
|
], |
|
default="contentvec", |
|
) |
|
batch_infer_parser.add_argument( |
|
"--embedder_model_custom", |
|
type=str, |
|
help=embedder_model_custom_description, |
|
default=None, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--f0_file", |
|
type=str, |
|
help=f0_file_description, |
|
default=None, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--formant_shifting", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=formant_shifting_description, |
|
default=False, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--formant_qfrency", |
|
type=float, |
|
help=formant_qfrency_description, |
|
default=1.0, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--formant_timbre", |
|
type=float, |
|
help=formant_timbre_description, |
|
default=1.0, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--sid", |
|
type=int, |
|
help=sid_description, |
|
default=0, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--post_process", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=post_process_description, |
|
default=False, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--reverb", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=reverb_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--pitch_shift", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=pitch_shift_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--limiter", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=limiter_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--gain", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=gain_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--distortion", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=distortion_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--chorus", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=chorus_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--bitcrush", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=bitcrush_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--clipping", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=clipping_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--compressor", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=compressor_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--delay", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=delay_description, |
|
default=False, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--reverb_room_size", |
|
type=float, |
|
help=reverb_room_size_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--reverb_damping", |
|
type=float, |
|
help=reverb_damping_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--reverb_wet_gain", |
|
type=float, |
|
help=reverb_wet_gain_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--reverb_dry_gain", |
|
type=float, |
|
help=reverb_dry_gain_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--reverb_width", |
|
type=float, |
|
help=reverb_width_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--reverb_freeze_mode", |
|
type=float, |
|
help=reverb_freeze_mode_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--pitch_shift_semitones", |
|
type=float, |
|
help=pitch_shift_semitones_description, |
|
default=0.0, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--limiter_threshold", |
|
type=float, |
|
help=limiter_threshold_description, |
|
default=-6, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--limiter_release_time", |
|
type=float, |
|
help=limiter_release_time_description, |
|
default=0.01, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--gain_db", |
|
type=float, |
|
help=gain_db_description, |
|
default=0.0, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--distortion_gain", |
|
type=float, |
|
help=distortion_gain_description, |
|
default=25, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--chorus_rate", |
|
type=float, |
|
help=chorus_rate_description, |
|
default=1.0, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--chorus_depth", |
|
type=float, |
|
help=chorus_depth_description, |
|
default=0.25, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--chorus_center_delay", |
|
type=float, |
|
help=chorus_center_delay_description, |
|
default=7, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--chorus_feedback", |
|
type=float, |
|
help=chorus_feedback_description, |
|
default=0.0, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--chorus_mix", |
|
type=float, |
|
help=chorus_mix_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--bitcrush_bit_depth", |
|
type=int, |
|
help=bitcrush_bit_depth_description, |
|
default=8, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--clipping_threshold", |
|
type=float, |
|
help=clipping_threshold_description, |
|
default=-6, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--compressor_threshold", |
|
type=float, |
|
help=compressor_threshold_description, |
|
default=0, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--compressor_ratio", |
|
type=float, |
|
help=compressor_ratio_description, |
|
default=1, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--compressor_attack", |
|
type=float, |
|
help=compressor_attack_description, |
|
default=1.0, |
|
required=False, |
|
) |
|
|
|
batch_infer_parser.add_argument( |
|
"--compressor_release", |
|
type=float, |
|
help=compressor_release_description, |
|
default=100, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--delay_seconds", |
|
type=float, |
|
help=delay_seconds_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--delay_feedback", |
|
type=float, |
|
help=delay_feedback_description, |
|
default=0.0, |
|
required=False, |
|
) |
|
batch_infer_parser.add_argument( |
|
"--delay_mix", |
|
type=float, |
|
help=delay_mix_description, |
|
default=0.5, |
|
required=False, |
|
) |
|
|
|
|
|
tts_parser = subparsers.add_parser("tts", help="Run TTS inference") |
|
tts_parser.add_argument( |
|
"--tts_file", type=str, help="File with a text to be synthesized", required=True |
|
) |
|
tts_parser.add_argument( |
|
"--tts_text", type=str, help="Text to be synthesized", required=True |
|
) |
|
tts_parser.add_argument( |
|
"--tts_voice", |
|
type=str, |
|
help="Voice to be used for TTS synthesis.", |
|
choices=locales, |
|
required=True, |
|
) |
|
tts_parser.add_argument( |
|
"--tts_rate", |
|
type=int, |
|
help="Control the speaking rate of the TTS. Values range from -100 (slower) to 100 (faster).", |
|
choices=range(-100, 101), |
|
default=0, |
|
) |
|
tts_parser.add_argument( |
|
"--pitch", |
|
type=int, |
|
help=pitch_description, |
|
choices=range(-24, 25), |
|
default=0, |
|
) |
|
tts_parser.add_argument( |
|
"--filter_radius", |
|
type=int, |
|
help=filter_radius_description, |
|
choices=range(11), |
|
default=3, |
|
) |
|
tts_parser.add_argument( |
|
"--index_rate", |
|
type=float, |
|
help=index_rate_description, |
|
choices=[(i / 10) for i in range(11)], |
|
default=0.3, |
|
) |
|
tts_parser.add_argument( |
|
"--volume_envelope", |
|
type=float, |
|
help=volume_envelope_description, |
|
choices=[(i / 10) for i in range(11)], |
|
default=1, |
|
) |
|
tts_parser.add_argument( |
|
"--protect", |
|
type=float, |
|
help=protect_description, |
|
choices=[(i / 10) for i in range(6)], |
|
default=0.33, |
|
) |
|
tts_parser.add_argument( |
|
"--hop_length", |
|
type=int, |
|
help=hop_length_description, |
|
choices=range(1, 513), |
|
default=128, |
|
) |
|
tts_parser.add_argument( |
|
"--f0_method", |
|
type=str, |
|
help=f0_method_description, |
|
choices=[ |
|
"crepe", |
|
"crepe-tiny", |
|
"rmvpe", |
|
"fcpe", |
|
"hybrid[crepe+rmvpe]", |
|
"hybrid[crepe+fcpe]", |
|
"hybrid[rmvpe+fcpe]", |
|
"hybrid[crepe+rmvpe+fcpe]", |
|
], |
|
default="rmvpe", |
|
) |
|
tts_parser.add_argument( |
|
"--output_tts_path", |
|
type=str, |
|
help="Full path to save the synthesized TTS audio.", |
|
required=True, |
|
) |
|
tts_parser.add_argument( |
|
"--output_rvc_path", |
|
type=str, |
|
help="Full path to save the voice-converted audio using the synthesized TTS.", |
|
required=True, |
|
) |
|
tts_parser.add_argument( |
|
"--pth_path", type=str, help=pth_path_description, required=True |
|
) |
|
tts_parser.add_argument( |
|
"--index_path", type=str, help=index_path_description, required=True |
|
) |
|
tts_parser.add_argument( |
|
"--split_audio", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=split_audio_description, |
|
default=False, |
|
) |
|
tts_parser.add_argument( |
|
"--f0_autotune", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=f0_autotune_description, |
|
default=False, |
|
) |
|
tts_parser.add_argument( |
|
"--f0_autotune_strength", |
|
type=float, |
|
help=clean_strength_description, |
|
choices=[(i / 10) for i in range(11)], |
|
default=1.0, |
|
) |
|
tts_parser.add_argument( |
|
"--clean_audio", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help=clean_audio_description, |
|
default=False, |
|
) |
|
tts_parser.add_argument( |
|
"--clean_strength", |
|
type=float, |
|
help=clean_strength_description, |
|
choices=[(i / 10) for i in range(11)], |
|
default=0.7, |
|
) |
|
tts_parser.add_argument( |
|
"--export_format", |
|
type=str, |
|
help=export_format_description, |
|
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"], |
|
default="WAV", |
|
) |
|
tts_parser.add_argument( |
|
"--embedder_model", |
|
type=str, |
|
help=embedder_model_description, |
|
choices=[ |
|
"contentvec", |
|
"chinese-hubert-base", |
|
"japanese-hubert-base", |
|
"korean-hubert-base", |
|
"custom", |
|
], |
|
default="contentvec", |
|
) |
|
tts_parser.add_argument( |
|
"--embedder_model_custom", |
|
type=str, |
|
help=embedder_model_custom_description, |
|
default=None, |
|
) |
|
tts_parser.add_argument( |
|
"--f0_file", |
|
type=str, |
|
help=f0_file_description, |
|
default=None, |
|
) |
|
|
|
|
|
preprocess_parser = subparsers.add_parser( |
|
"preprocess", help="Preprocess a dataset for training." |
|
) |
|
preprocess_parser.add_argument( |
|
"--model_name", type=str, help="Name of the model to be trained.", required=True |
|
) |
|
preprocess_parser.add_argument( |
|
"--dataset_path", type=str, help="Path to the dataset directory.", required=True |
|
) |
|
preprocess_parser.add_argument( |
|
"--sample_rate", |
|
type=int, |
|
help="Target sampling rate for the audio data.", |
|
choices=[32000, 40000, 44100, 48000], |
|
required=True, |
|
) |
|
preprocess_parser.add_argument( |
|
"--cpu_cores", |
|
type=int, |
|
help="Number of CPU cores to use for preprocessing.", |
|
choices=range(1, 65), |
|
) |
|
preprocess_parser.add_argument( |
|
"--cut_preprocess", |
|
type=str, |
|
choices=["Skip", "Simple", "Automatic"], |
|
help="Cut the dataset into smaller segments for faster preprocessing.", |
|
default="Automatic", |
|
required=True, |
|
) |
|
preprocess_parser.add_argument( |
|
"--process_effects", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Disable all filters during preprocessing.", |
|
default=False, |
|
required=False, |
|
) |
|
preprocess_parser.add_argument( |
|
"--noise_reduction", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Enable noise reduction during preprocessing.", |
|
default=False, |
|
required=False, |
|
) |
|
preprocess_parser.add_argument( |
|
"--noise_reduction_strength", |
|
type=float, |
|
help="Strength of the noise reduction filter.", |
|
choices=[(i / 10) for i in range(11)], |
|
default=0.7, |
|
required=False, |
|
) |
|
preprocess_parser.add_argument( |
|
"--chunk_len", |
|
type=float, |
|
help="Chunk length.", |
|
choices=[i * 0.5 for i in range(1, 11)], |
|
default=3.0, |
|
required=False, |
|
) |
|
preprocess_parser.add_argument( |
|
"--overlap_len", |
|
type=float, |
|
help="Overlap length.", |
|
choices=[0.0, 0.1, 0.2, 0.3, 0.4], |
|
default=0.3, |
|
required=False, |
|
) |
|
|
|
|
|
extract_parser = subparsers.add_parser( |
|
"extract", help="Extract features from a dataset." |
|
) |
|
extract_parser.add_argument( |
|
"--model_name", type=str, help="Name of the model.", required=True |
|
) |
|
extract_parser.add_argument( |
|
"--f0_method", |
|
type=str, |
|
help="Pitch extraction method to use.", |
|
choices=[ |
|
"crepe", |
|
"crepe-tiny", |
|
"rmvpe", |
|
], |
|
default="rmvpe", |
|
) |
|
extract_parser.add_argument( |
|
"--hop_length", |
|
type=int, |
|
help="Hop length for feature extraction. Only applicable for Crepe pitch extraction.", |
|
choices=range(1, 513), |
|
default=128, |
|
) |
|
extract_parser.add_argument( |
|
"--cpu_cores", |
|
type=int, |
|
help="Number of CPU cores to use for feature extraction (optional).", |
|
choices=range(1, 65), |
|
default=None, |
|
) |
|
extract_parser.add_argument( |
|
"--gpu", |
|
type=str, |
|
help="GPU device to use for feature extraction (optional).", |
|
default="-", |
|
) |
|
extract_parser.add_argument( |
|
"--sample_rate", |
|
type=int, |
|
help="Target sampling rate for the audio data.", |
|
choices=[32000, 40000, 44100, 48000], |
|
required=True, |
|
) |
|
extract_parser.add_argument( |
|
"--embedder_model", |
|
type=str, |
|
help=embedder_model_description, |
|
choices=[ |
|
"contentvec", |
|
"chinese-hubert-base", |
|
"japanese-hubert-base", |
|
"korean-hubert-base", |
|
"custom", |
|
], |
|
default="contentvec", |
|
) |
|
extract_parser.add_argument( |
|
"--embedder_model_custom", |
|
type=str, |
|
help=embedder_model_custom_description, |
|
default=None, |
|
) |
|
extract_parser.add_argument( |
|
"--include_mutes", |
|
type=int, |
|
help="Number of silent files to include.", |
|
choices=range(0, 11), |
|
default=2, |
|
required=True, |
|
) |
|
|
|
|
|
train_parser = subparsers.add_parser("train", help="Train an RVC model.") |
|
train_parser.add_argument( |
|
"--model_name", type=str, help="Name of the model to be trained.", required=True |
|
) |
|
train_parser.add_argument( |
|
"--vocoder", |
|
type=str, |
|
help="Vocoder name", |
|
choices=["HiFi-GAN", "MRF HiFi-GAN", "RefineGAN"], |
|
default="HiFi-GAN", |
|
) |
|
train_parser.add_argument( |
|
"--checkpointing", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Enables memory-efficient training.", |
|
default=False, |
|
required=False, |
|
) |
|
train_parser.add_argument( |
|
"--save_every_epoch", |
|
type=int, |
|
help="Save the model every specified number of epochs.", |
|
choices=range(1, 101), |
|
required=True, |
|
) |
|
train_parser.add_argument( |
|
"--save_only_latest", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Save only the latest model checkpoint.", |
|
default=False, |
|
) |
|
train_parser.add_argument( |
|
"--save_every_weights", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Save model weights every epoch.", |
|
default=True, |
|
) |
|
train_parser.add_argument( |
|
"--total_epoch", |
|
type=int, |
|
help="Total number of epochs to train for.", |
|
choices=range(1, 10001), |
|
default=1000, |
|
) |
|
train_parser.add_argument( |
|
"--sample_rate", |
|
type=int, |
|
help="Sampling rate of the training data.", |
|
choices=[32000, 40000, 48000], |
|
required=True, |
|
) |
|
train_parser.add_argument( |
|
"--batch_size", |
|
type=int, |
|
help="Batch size for training.", |
|
choices=range(1, 51), |
|
default=8, |
|
) |
|
train_parser.add_argument( |
|
"--gpu", |
|
type=str, |
|
help="GPU device to use for training (e.g., '0').", |
|
default="0", |
|
) |
|
train_parser.add_argument( |
|
"--pretrained", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Use a pretrained model for initialization.", |
|
default=True, |
|
) |
|
train_parser.add_argument( |
|
"--custom_pretrained", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Use a custom pretrained model.", |
|
default=False, |
|
) |
|
train_parser.add_argument( |
|
"--g_pretrained_path", |
|
type=str, |
|
nargs="?", |
|
default=None, |
|
help="Path to the pretrained generator model file.", |
|
) |
|
train_parser.add_argument( |
|
"--d_pretrained_path", |
|
type=str, |
|
nargs="?", |
|
default=None, |
|
help="Path to the pretrained discriminator model file.", |
|
) |
|
train_parser.add_argument( |
|
"--overtraining_detector", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Enable overtraining detection.", |
|
default=False, |
|
) |
|
train_parser.add_argument( |
|
"--overtraining_threshold", |
|
type=int, |
|
help="Threshold for overtraining detection.", |
|
choices=range(1, 101), |
|
default=50, |
|
) |
|
train_parser.add_argument( |
|
"--cleanup", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Cleanup previous training attempt.", |
|
default=False, |
|
) |
|
train_parser.add_argument( |
|
"--cache_data_in_gpu", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
help="Cache training data in GPU memory.", |
|
default=False, |
|
) |
|
train_parser.add_argument( |
|
"--index_algorithm", |
|
type=str, |
|
choices=["Auto", "Faiss", "KMeans"], |
|
help="Choose the method for generating the index file.", |
|
default="Auto", |
|
required=False, |
|
) |
|
|
|
|
|
index_parser = subparsers.add_parser( |
|
"index", help="Generate an index file for an RVC model." |
|
) |
|
index_parser.add_argument( |
|
"--model_name", type=str, help="Name of the model.", required=True |
|
) |
|
index_parser.add_argument( |
|
"--index_algorithm", |
|
type=str, |
|
choices=["Auto", "Faiss", "KMeans"], |
|
help="Choose the method for generating the index file.", |
|
default="Auto", |
|
required=False, |
|
) |
|
|
|
|
|
model_information_parser = subparsers.add_parser( |
|
"model_information", help="Display information about a trained model." |
|
) |
|
model_information_parser.add_argument( |
|
"--pth_path", type=str, help="Path to the .pth model file.", required=True |
|
) |
|
|
|
|
|
model_blender_parser = subparsers.add_parser( |
|
"model_blender", help="Fuse two RVC models together." |
|
) |
|
model_blender_parser.add_argument( |
|
"--model_name", type=str, help="Name of the new fused model.", required=True |
|
) |
|
model_blender_parser.add_argument( |
|
"--pth_path_1", |
|
type=str, |
|
help="Path to the first .pth model file.", |
|
required=True, |
|
) |
|
model_blender_parser.add_argument( |
|
"--pth_path_2", |
|
type=str, |
|
help="Path to the second .pth model file.", |
|
required=True, |
|
) |
|
model_blender_parser.add_argument( |
|
"--ratio", |
|
type=float, |
|
help="Ratio for blending the two models (0.0 to 1.0).", |
|
choices=[(i / 10) for i in range(11)], |
|
default=0.5, |
|
) |
|
|
|
|
|
subparsers.add_parser( |
|
"tensorboard", help="Launch TensorBoard for monitoring training progress." |
|
) |
|
|
|
|
|
download_parser = subparsers.add_parser( |
|
"download", help="Download a model from a provided link." |
|
) |
|
download_parser.add_argument( |
|
"--model_link", type=str, help="Direct link to the model file.", required=True |
|
) |
|
|
|
|
|
prerequisites_parser = subparsers.add_parser( |
|
"prerequisites", help="Install prerequisites for RVC." |
|
) |
|
prerequisites_parser.add_argument( |
|
"--pretraineds_hifigan", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
default=True, |
|
help="Download pretrained models for RVC v2.", |
|
) |
|
prerequisites_parser.add_argument( |
|
"--models", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
default=True, |
|
help="Download additional models.", |
|
) |
|
prerequisites_parser.add_argument( |
|
"--exe", |
|
type=lambda x: bool(strtobool(x)), |
|
choices=[True, False], |
|
default=True, |
|
help="Download required executables.", |
|
) |
|
|
|
|
|
audio_analyzer = subparsers.add_parser( |
|
"audio_analyzer", help="Analyze an audio file." |
|
) |
|
audio_analyzer.add_argument( |
|
"--input_path", type=str, help="Path to the input audio file.", required=True |
|
) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
def main(): |
|
if len(sys.argv) == 1: |
|
print("Please run the script with '-h' for more information.") |
|
sys.exit(1) |
|
|
|
args = parse_arguments() |
|
|
|
try: |
|
if args.mode == "infer": |
|
run_infer_script( |
|
pitch=args.pitch, |
|
filter_radius=args.filter_radius, |
|
index_rate=args.index_rate, |
|
volume_envelope=args.volume_envelope, |
|
protect=args.protect, |
|
hop_length=args.hop_length, |
|
f0_method=args.f0_method, |
|
input_path=args.input_path, |
|
output_path=args.output_path, |
|
pth_path=args.pth_path, |
|
index_path=args.index_path, |
|
split_audio=args.split_audio, |
|
f0_autotune=args.f0_autotune, |
|
f0_autotune_strength=args.f0_autotune_strength, |
|
clean_audio=args.clean_audio, |
|
clean_strength=args.clean_strength, |
|
export_format=args.export_format, |
|
embedder_model=args.embedder_model, |
|
embedder_model_custom=args.embedder_model_custom, |
|
f0_file=args.f0_file, |
|
formant_shifting=args.formant_shifting, |
|
formant_qfrency=args.formant_qfrency, |
|
formant_timbre=args.formant_timbre, |
|
sid=args.sid, |
|
post_process=args.post_process, |
|
reverb=args.reverb, |
|
pitch_shift=args.pitch_shift, |
|
limiter=args.limiter, |
|
gain=args.gain, |
|
distortion=args.distortion, |
|
chorus=args.chorus, |
|
bitcrush=args.bitcrush, |
|
clipping=args.clipping, |
|
compressor=args.compressor, |
|
delay=args.delay, |
|
reverb_room_size=args.reverb_room_size, |
|
reverb_damping=args.reverb_damping, |
|
reverb_wet_gain=args.reverb_wet_gain, |
|
reverb_dry_gain=args.reverb_dry_gain, |
|
reverb_width=args.reverb_width, |
|
reverb_freeze_mode=args.reverb_freeze_mode, |
|
pitch_shift_semitones=args.pitch_shift_semitones, |
|
limiter_threshold=args.limiter_threshold, |
|
limiter_release_time=args.limiter_release_time, |
|
gain_db=args.gain_db, |
|
distortion_gain=args.distortion_gain, |
|
chorus_rate=args.chorus_rate, |
|
chorus_depth=args.chorus_depth, |
|
chorus_center_delay=args.chorus_center_delay, |
|
chorus_feedback=args.chorus_feedback, |
|
chorus_mix=args.chorus_mix, |
|
bitcrush_bit_depth=args.bitcrush_bit_depth, |
|
clipping_threshold=args.clipping_threshold, |
|
compressor_threshold=args.compressor_threshold, |
|
compressor_ratio=args.compressor_ratio, |
|
compressor_attack=args.compressor_attack, |
|
compressor_release=args.compressor_release, |
|
delay_seconds=args.delay_seconds, |
|
delay_feedback=args.delay_feedback, |
|
delay_mix=args.delay_mix, |
|
) |
|
elif args.mode == "batch_infer": |
|
run_batch_infer_script( |
|
pitch=args.pitch, |
|
filter_radius=args.filter_radius, |
|
index_rate=args.index_rate, |
|
volume_envelope=args.volume_envelope, |
|
protect=args.protect, |
|
hop_length=args.hop_length, |
|
f0_method=args.f0_method, |
|
input_folder=args.input_folder, |
|
output_folder=args.output_folder, |
|
pth_path=args.pth_path, |
|
index_path=args.index_path, |
|
split_audio=args.split_audio, |
|
f0_autotune=args.f0_autotune, |
|
f0_autotune_strength=args.f0_autotune_strength, |
|
clean_audio=args.clean_audio, |
|
clean_strength=args.clean_strength, |
|
export_format=args.export_format, |
|
embedder_model=args.embedder_model, |
|
embedder_model_custom=args.embedder_model_custom, |
|
f0_file=args.f0_file, |
|
formant_shifting=args.formant_shifting, |
|
formant_qfrency=args.formant_qfrency, |
|
formant_timbre=args.formant_timbre, |
|
sid=args.sid, |
|
post_process=args.post_process, |
|
reverb=args.reverb, |
|
pitch_shift=args.pitch_shift, |
|
limiter=args.limiter, |
|
gain=args.gain, |
|
distortion=args.distortion, |
|
chorus=args.chorus, |
|
bitcrush=args.bitcrush, |
|
clipping=args.clipping, |
|
compressor=args.compressor, |
|
delay=args.delay, |
|
reverb_room_size=args.reverb_room_size, |
|
reverb_damping=args.reverb_damping, |
|
reverb_wet_gain=args.reverb_wet_gain, |
|
reverb_dry_gain=args.reverb_dry_gain, |
|
reverb_width=args.reverb_width, |
|
reverb_freeze_mode=args.reverb_freeze_mode, |
|
pitch_shift_semitones=args.pitch_shift_semitones, |
|
limiter_threshold=args.limiter_threshold, |
|
limiter_release_time=args.limiter_release_time, |
|
gain_db=args.gain_db, |
|
distortion_gain=args.distortion_gain, |
|
chorus_rate=args.chorus_rate, |
|
chorus_depth=args.chorus_depth, |
|
chorus_center_delay=args.chorus_center_delay, |
|
chorus_feedback=args.chorus_feedback, |
|
chorus_mix=args.chorus_mix, |
|
bitcrush_bit_depth=args.bitcrush_bit_depth, |
|
clipping_threshold=args.clipping_threshold, |
|
compressor_threshold=args.compressor_threshold, |
|
compressor_ratio=args.compressor_ratio, |
|
compressor_attack=args.compressor_attack, |
|
compressor_release=args.compressor_release, |
|
delay_seconds=args.delay_seconds, |
|
delay_feedback=args.delay_feedback, |
|
delay_mix=args.delay_mix, |
|
) |
|
elif args.mode == "tts": |
|
run_tts_script( |
|
tts_file=args.tts_file, |
|
tts_text=args.tts_text, |
|
tts_voice=args.tts_voice, |
|
tts_rate=args.tts_rate, |
|
pitch=args.pitch, |
|
filter_radius=args.filter_radius, |
|
index_rate=args.index_rate, |
|
volume_envelope=args.volume_envelope, |
|
protect=args.protect, |
|
hop_length=args.hop_length, |
|
f0_method=args.f0_method, |
|
output_tts_path=args.output_tts_path, |
|
output_rvc_path=args.output_rvc_path, |
|
pth_path=args.pth_path, |
|
index_path=args.index_path, |
|
split_audio=args.split_audio, |
|
f0_autotune=args.f0_autotune, |
|
f0_autotune_strength=args.f0_autotune_strength, |
|
clean_audio=args.clean_audio, |
|
clean_strength=args.clean_strength, |
|
export_format=args.export_format, |
|
embedder_model=args.embedder_model, |
|
embedder_model_custom=args.embedder_model_custom, |
|
f0_file=args.f0_file, |
|
) |
|
elif args.mode == "preprocess": |
|
run_preprocess_script( |
|
model_name=args.model_name, |
|
dataset_path=args.dataset_path, |
|
sample_rate=args.sample_rate, |
|
cpu_cores=args.cpu_cores, |
|
cut_preprocess=args.cut_preprocess, |
|
process_effects=args.process_effects, |
|
noise_reduction=args.noise_reduction, |
|
clean_strength=args.noise_reduction_strength, |
|
chunk_len=args.chunk_len, |
|
overlap_len=args.overlap_len, |
|
) |
|
elif args.mode == "extract": |
|
run_extract_script( |
|
model_name=args.model_name, |
|
f0_method=args.f0_method, |
|
hop_length=args.hop_length, |
|
cpu_cores=args.cpu_cores, |
|
gpu=args.gpu, |
|
sample_rate=args.sample_rate, |
|
embedder_model=args.embedder_model, |
|
embedder_model_custom=args.embedder_model_custom, |
|
include_mutes=args.include_mutes, |
|
) |
|
elif args.mode == "train": |
|
run_train_script( |
|
model_name=args.model_name, |
|
save_every_epoch=args.save_every_epoch, |
|
save_only_latest=args.save_only_latest, |
|
save_every_weights=args.save_every_weights, |
|
total_epoch=args.total_epoch, |
|
sample_rate=args.sample_rate, |
|
batch_size=args.batch_size, |
|
gpu=args.gpu, |
|
overtraining_detector=args.overtraining_detector, |
|
overtraining_threshold=args.overtraining_threshold, |
|
pretrained=args.pretrained, |
|
custom_pretrained=args.custom_pretrained, |
|
cleanup=args.cleanup, |
|
index_algorithm=args.index_algorithm, |
|
cache_data_in_gpu=args.cache_data_in_gpu, |
|
g_pretrained_path=args.g_pretrained_path, |
|
d_pretrained_path=args.d_pretrained_path, |
|
vocoder=args.vocoder, |
|
checkpointing=args.checkpointing, |
|
) |
|
elif args.mode == "index": |
|
run_index_script( |
|
model_name=args.model_name, |
|
index_algorithm=args.index_algorithm, |
|
) |
|
elif args.mode == "model_information": |
|
run_model_information_script( |
|
pth_path=args.pth_path, |
|
) |
|
elif args.mode == "model_blender": |
|
run_model_blender_script( |
|
model_name=args.model_name, |
|
pth_path_1=args.pth_path_1, |
|
pth_path_2=args.pth_path_2, |
|
ratio=args.ratio, |
|
) |
|
elif args.mode == "tensorboard": |
|
run_tensorboard_script() |
|
elif args.mode == "download": |
|
run_download_script( |
|
model_link=args.model_link, |
|
) |
|
elif args.mode == "prerequisites": |
|
run_prerequisites_script( |
|
pretraineds_hifigan=args.pretraineds_hifigan, |
|
models=args.models, |
|
exe=args.exe, |
|
) |
|
elif args.mode == "audio_analyzer": |
|
run_audio_analyzer_script( |
|
input_path=args.input_path, |
|
) |
|
except Exception as error: |
|
print(f"An error occurred during execution: {error}") |
|
|
|
import traceback |
|
|
|
traceback.print_exc() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|