kittendev commited on
Commit
0b422fb
·
verified ·
1 Parent(s): 8274714

Upload 10 files

Browse files
experiments/data/AffinityNet@ResNet-50@Puzzle.json ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": [
3
+ {
4
+ "iteration": 33,
5
+ "learning_rate": 0.0970861508426711,
6
+ "loss": 0.5866460131876396,
7
+ "bg_loss": 0.5233571095900102,
8
+ "fg_loss": 0.7139600244435397,
9
+ "neg_loss": 0.5546334516821485,
10
+ "time": 21
11
+ },
12
+ {
13
+ "iteration": 66,
14
+ "learning_rate": 0.09407102677491641,
15
+ "loss": 0.40963187633138715,
16
+ "bg_loss": 0.33108059791001404,
17
+ "fg_loss": 0.5322336229411039,
18
+ "neg_loss": 0.3876066519455476,
19
+ "time": 18
20
+ },
21
+ {
22
+ "iteration": 99,
23
+ "learning_rate": 0.09104512443224444,
24
+ "loss": 0.3690246849349051,
25
+ "bg_loss": 0.29073836451227014,
26
+ "fg_loss": 0.4917384693116853,
27
+ "neg_loss": 0.346810960408413,
28
+ "time": 18
29
+ },
30
+ {
31
+ "iteration": 132,
32
+ "learning_rate": 0.08800800418222955,
33
+ "loss": 0.3704847458637122,
34
+ "bg_loss": 0.29450454991875274,
35
+ "fg_loss": 0.4954071586782282,
36
+ "neg_loss": 0.34601363810625946,
37
+ "time": 18
38
+ },
39
+ {
40
+ "iteration": 165,
41
+ "learning_rate": 0.08495919083186296,
42
+ "loss": 0.36553319024317193,
43
+ "bg_loss": 0.2897158454764973,
44
+ "fg_loss": 0.48519686045068683,
45
+ "neg_loss": 0.34361002481344977,
46
+ "time": 19
47
+ },
48
+ {
49
+ "iteration": 198,
50
+ "learning_rate": 0.08189816921022657,
51
+ "loss": 0.3529296282565955,
52
+ "bg_loss": 0.27994743170160236,
53
+ "fg_loss": 0.46498510602748755,
54
+ "neg_loss": 0.3333929871970957,
55
+ "time": 19
56
+ },
57
+ {
58
+ "iteration": 231,
59
+ "learning_rate": 0.07882437899493905,
60
+ "loss": 0.34691446297096484,
61
+ "bg_loss": 0.280864008899891,
62
+ "fg_loss": 0.4627404267137701,
63
+ "neg_loss": 0.32202670203916955,
64
+ "time": 19
65
+ },
66
+ {
67
+ "iteration": 264,
68
+ "learning_rate": 0.07573720861426649,
69
+ "loss": 0.36945641853592615,
70
+ "bg_loss": 0.29755075004967774,
71
+ "fg_loss": 0.48030055562655133,
72
+ "neg_loss": 0.3499871831048619,
73
+ "time": 19
74
+ },
75
+ {
76
+ "iteration": 297,
77
+ "learning_rate": 0.07263598801004133,
78
+ "loss": 0.34961124983700836,
79
+ "bg_loss": 0.26982272664705914,
80
+ "fg_loss": 0.4781319562232856,
81
+ "neg_loss": 0.3252451546264417,
82
+ "time": 19
83
+ },
84
+ {
85
+ "iteration": 330,
86
+ "learning_rate": 0.06951997998392269,
87
+ "loss": 0.33844967592846265,
88
+ "bg_loss": 0.27119036289778625,
89
+ "fg_loss": 0.44598155130039563,
90
+ "neg_loss": 0.3183133900165558,
91
+ "time": 19
92
+ },
93
+ {
94
+ "iteration": 363,
95
+ "learning_rate": 0.06638836976461192,
96
+ "loss": 0.3259113810279153,
97
+ "bg_loss": 0.25990688845966803,
98
+ "fg_loss": 0.44178865172646264,
99
+ "neg_loss": 0.3009749958009431,
100
+ "time": 21
101
+ },
102
+ {
103
+ "iteration": 396,
104
+ "learning_rate": 0.06324025231685389,
105
+ "loss": 0.3374804077726422,
106
+ "bg_loss": 0.26213650224786816,
107
+ "fg_loss": 0.4632176774920839,
108
+ "neg_loss": 0.31228372635263385,
109
+ "time": 18
110
+ },
111
+ {
112
+ "iteration": 429,
113
+ "learning_rate": 0.060074616750003064,
114
+ "loss": 0.3277285442207799,
115
+ "bg_loss": 0.2583402566837542,
116
+ "fg_loss": 0.437311923865116,
117
+ "neg_loss": 0.307630998618675,
118
+ "time": 18
119
+ },
120
+ {
121
+ "iteration": 462,
122
+ "learning_rate": 0.05689032695244774,
123
+ "loss": 0.33126068024924304,
124
+ "bg_loss": 0.25328145785765216,
125
+ "fg_loss": 0.4549060838692116,
126
+ "neg_loss": 0.3084275921185811,
127
+ "time": 18
128
+ },
129
+ {
130
+ "iteration": 495,
131
+ "learning_rate": 0.05368609724342358,
132
+ "loss": 0.3301110321825201,
133
+ "bg_loss": 0.24938995910413336,
134
+ "fg_loss": 0.4539953452168089,
135
+ "neg_loss": 0.3085294103983677,
136
+ "time": 19
137
+ },
138
+ {
139
+ "iteration": 528,
140
+ "learning_rate": 0.050460461339572875,
141
+ "loss": 0.32294100071444654,
142
+ "bg_loss": 0.2520504941542943,
143
+ "fg_loss": 0.4341311409617915,
144
+ "neg_loss": 0.30279118183887366,
145
+ "time": 19
146
+ },
147
+ {
148
+ "iteration": 561,
149
+ "learning_rate": 0.04721173218711773,
150
+ "loss": 0.3173816149885004,
151
+ "bg_loss": 0.2464458802432725,
152
+ "fg_loss": 0.43807437654697534,
153
+ "neg_loss": 0.2925030995499004,
154
+ "time": 19
155
+ },
156
+ {
157
+ "iteration": 594,
158
+ "learning_rate": 0.04393794905320688,
159
+ "loss": 0.3270375439614961,
160
+ "bg_loss": 0.24718600060000565,
161
+ "fg_loss": 0.44520725896864227,
162
+ "neg_loss": 0.30787845813866815,
163
+ "time": 19
164
+ },
165
+ {
166
+ "iteration": 627,
167
+ "learning_rate": 0.040636806421948155,
168
+ "loss": 0.3237305942809943,
169
+ "bg_loss": 0.2510744378422246,
170
+ "fg_loss": 0.446515137499029,
171
+ "neg_loss": 0.2986664008913618,
172
+ "time": 19
173
+ },
174
+ {
175
+ "iteration": 660,
176
+ "learning_rate": 0.03730555618768135,
177
+ "loss": 0.32577813936002326,
178
+ "bg_loss": 0.24429085354010263,
179
+ "fg_loss": 0.44716153451890656,
180
+ "neg_loss": 0.3058300858194178,
181
+ "time": 19
182
+ },
183
+ {
184
+ "iteration": 693,
185
+ "learning_rate": 0.03394086939173903,
186
+ "loss": 0.3253612716992696,
187
+ "bg_loss": 0.2506656556418448,
188
+ "fg_loss": 0.4395515846483635,
189
+ "neg_loss": 0.30561393092979083,
190
+ "time": 21
191
+ },
192
+ {
193
+ "iteration": 726,
194
+ "learning_rate": 0.030538634305235113,
195
+ "loss": 0.32416180950222595,
196
+ "bg_loss": 0.24405673868728406,
197
+ "fg_loss": 0.44724463603713294,
198
+ "neg_loss": 0.30267293751239777,
199
+ "time": 18
200
+ },
201
+ {
202
+ "iteration": 759,
203
+ "learning_rate": 0.027093649690756172,
204
+ "loss": 0.31848554629268067,
205
+ "bg_loss": 0.24131283660729727,
206
+ "fg_loss": 0.42892517013983295,
207
+ "neg_loss": 0.3018520921468735,
208
+ "time": 19
209
+ },
210
+ {
211
+ "iteration": 792,
212
+ "learning_rate": 0.023599135486304823,
213
+ "loss": 0.3286536227573048,
214
+ "bg_loss": 0.24239229478619315,
215
+ "fg_loss": 0.4539906427715764,
216
+ "neg_loss": 0.30911578238010406,
217
+ "time": 19
218
+ },
219
+ {
220
+ "iteration": 825,
221
+ "learning_rate": 0.020045902057298105,
222
+ "loss": 0.3113328931909619,
223
+ "bg_loss": 0.2352320556387757,
224
+ "fg_loss": 0.43500121615149756,
225
+ "neg_loss": 0.28754914168155554,
226
+ "time": 19
227
+ },
228
+ {
229
+ "iteration": 858,
230
+ "learning_rate": 0.01642081853355303,
231
+ "loss": 0.3110247787201043,
232
+ "bg_loss": 0.24174893308769574,
233
+ "fg_loss": 0.4270530875885125,
234
+ "neg_loss": 0.28764855139183276,
235
+ "time": 19
236
+ },
237
+ {
238
+ "iteration": 891,
239
+ "learning_rate": 0.012703644293701761,
240
+ "loss": 0.3181552972757455,
241
+ "bg_loss": 0.24216932825969928,
242
+ "fg_loss": 0.4329548586498607,
243
+ "neg_loss": 0.2987484954523318,
244
+ "time": 19
245
+ },
246
+ {
247
+ "iteration": 924,
248
+ "learning_rate": 0.00885922327791189,
249
+ "loss": 0.3106524303103938,
250
+ "bg_loss": 0.2488641684705561,
251
+ "fg_loss": 0.4280233663139921,
252
+ "neg_loss": 0.28286109593781555,
253
+ "time": 19
254
+ },
255
+ {
256
+ "iteration": 957,
257
+ "learning_rate": 0.004811265798780708,
258
+ "loss": 0.314092702034748,
259
+ "bg_loss": 0.23641148480502042,
260
+ "fg_loss": 0.4319495341994546,
261
+ "neg_loss": 0.29400490404981555,
262
+ "time": 19
263
+ },
264
+ {
265
+ "iteration": 990,
266
+ "learning_rate": 0.0002013391936053551,
267
+ "loss": 0.31149207281343866,
268
+ "bg_loss": 0.24037162959575653,
269
+ "fg_loss": 0.4172908275416403,
270
+ "neg_loss": 0.29415291954170575,
271
+ "time": 19
272
+ }
273
+ ]
274
+ }
experiments/data/DeepLabv3+@ResNet-50@Fix@GN.json ADDED
@@ -0,0 +1,996 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": [
3
+ {
4
+ "iteration": 66,
5
+ "learning_rate": 0.00695868537042759,
6
+ "loss": 1.664045754707221,
7
+ "time": 18
8
+ },
9
+ {
10
+ "iteration": 132,
11
+ "learning_rate": 0.006916707224863651,
12
+ "loss": 1.1374609063972125,
13
+ "time": 17
14
+ },
15
+ {
16
+ "iteration": 198,
17
+ "learning_rate": 0.006874700752292724,
18
+ "loss": 0.9249266015760826,
19
+ "time": 17
20
+ },
21
+ {
22
+ "iteration": 264,
23
+ "learning_rate": 0.0068326657410178755,
24
+ "loss": 0.7838684871341243,
25
+ "time": 17
26
+ },
27
+ {
28
+ "iteration": 330,
29
+ "learning_rate": 0.006790601976301163,
30
+ "loss": 0.8084198091969346,
31
+ "time": 17
32
+ },
33
+ {
34
+ "iteration": 396,
35
+ "learning_rate": 0.00674850924029869,
36
+ "loss": 0.6802865835753354,
37
+ "time": 17
38
+ },
39
+ {
40
+ "iteration": 462,
41
+ "learning_rate": 0.00670638731199384,
42
+ "loss": 0.6661223335699602,
43
+ "time": 17
44
+ },
45
+ {
46
+ "iteration": 528,
47
+ "learning_rate": 0.006664235967128578,
48
+ "loss": 0.6198905419671175,
49
+ "time": 17
50
+ },
51
+ {
52
+ "iteration": 594,
53
+ "learning_rate": 0.006622054978132788,
54
+ "loss": 0.6302771365100687,
55
+ "time": 17
56
+ },
57
+ {
58
+ "iteration": 660,
59
+ "learning_rate": 0.006579844114051548,
60
+ "loss": 0.603990330840602,
61
+ "time": 17
62
+ },
63
+ {
64
+ "iteration": 726,
65
+ "learning_rate": 0.0065376031404702824,
66
+ "loss": 0.5299641435796564,
67
+ "time": 55
68
+ },
69
+ {
70
+ "iteration": 792,
71
+ "learning_rate": 0.006495331819437704,
72
+ "loss": 0.566999916325916,
73
+ "time": 17
74
+ },
75
+ {
76
+ "iteration": 858,
77
+ "learning_rate": 0.006453029909386482,
78
+ "loss": 0.5230298128091928,
79
+ "time": 17
80
+ },
81
+ {
82
+ "iteration": 924,
83
+ "learning_rate": 0.006410697165051521,
84
+ "loss": 0.5736041150309823,
85
+ "time": 17
86
+ },
87
+ {
88
+ "iteration": 990,
89
+ "learning_rate": 0.006368333337385802,
90
+ "loss": 0.5718640368996244,
91
+ "time": 17
92
+ },
93
+ {
94
+ "iteration": 1056,
95
+ "learning_rate": 0.006325938173473646,
96
+ "loss": 0.5016382916858702,
97
+ "time": 17
98
+ },
99
+ {
100
+ "iteration": 1122,
101
+ "learning_rate": 0.006283511416441352,
102
+ "loss": 0.5113696085684227,
103
+ "time": 17
104
+ },
105
+ {
106
+ "iteration": 1188,
107
+ "learning_rate": 0.006241052805365063,
108
+ "loss": 0.5154157172549855,
109
+ "time": 17
110
+ },
111
+ {
112
+ "iteration": 1254,
113
+ "learning_rate": 0.006198562075175791,
114
+ "loss": 0.45907864268078946,
115
+ "time": 17
116
+ },
117
+ {
118
+ "iteration": 1320,
119
+ "learning_rate": 0.006156038956561459,
120
+ "loss": 0.5086112559744806,
121
+ "time": 17
122
+ },
123
+ {
124
+ "iteration": 1386,
125
+ "learning_rate": 0.006113483175865872,
126
+ "loss": 0.44784884967587213,
127
+ "time": 56
128
+ },
129
+ {
130
+ "iteration": 1452,
131
+ "learning_rate": 0.006070894454984471,
132
+ "loss": 0.47301059419458563,
133
+ "time": 17
134
+ },
135
+ {
136
+ "iteration": 1518,
137
+ "learning_rate": 0.0060282725112567595,
138
+ "loss": 0.5367979565353105,
139
+ "time": 17
140
+ },
141
+ {
142
+ "iteration": 1584,
143
+ "learning_rate": 0.005985617057355253,
144
+ "loss": 0.49079103790449374,
145
+ "time": 17
146
+ },
147
+ {
148
+ "iteration": 1650,
149
+ "learning_rate": 0.00594292780117084,
150
+ "loss": 0.4658460576425899,
151
+ "time": 17
152
+ },
153
+ {
154
+ "iteration": 1716,
155
+ "learning_rate": 0.005900204445694358,
156
+ "loss": 0.5231300244728724,
157
+ "time": 17
158
+ },
159
+ {
160
+ "iteration": 1782,
161
+ "learning_rate": 0.005857446688894291,
162
+ "loss": 0.45534452999180014,
163
+ "time": 17
164
+ },
165
+ {
166
+ "iteration": 1848,
167
+ "learning_rate": 0.005814654223590375,
168
+ "loss": 0.4160067037199483,
169
+ "time": 17
170
+ },
171
+ {
172
+ "iteration": 1914,
173
+ "learning_rate": 0.005771826737322973,
174
+ "loss": 0.42704944583502685,
175
+ "time": 17
176
+ },
177
+ {
178
+ "iteration": 1980,
179
+ "learning_rate": 0.005728963912218022,
180
+ "loss": 0.43442001216339343,
181
+ "time": 17
182
+ },
183
+ {
184
+ "iteration": 2046,
185
+ "learning_rate": 0.005686065424847384,
186
+ "loss": 0.41057996316389606,
187
+ "time": 56
188
+ },
189
+ {
190
+ "iteration": 2112,
191
+ "learning_rate": 0.005643130946084387,
192
+ "loss": 0.4332253982623418,
193
+ "time": 17
194
+ },
195
+ {
196
+ "iteration": 2178,
197
+ "learning_rate": 0.005600160140954346,
198
+ "loss": 0.4205174789284215,
199
+ "time": 17
200
+ },
201
+ {
202
+ "iteration": 2244,
203
+ "learning_rate": 0.0055571526684798775,
204
+ "loss": 0.38335484943606635,
205
+ "time": 17
206
+ },
207
+ {
208
+ "iteration": 2310,
209
+ "learning_rate": 0.005514108181520723,
210
+ "loss": 0.3868400036837115,
211
+ "time": 17
212
+ },
213
+ {
214
+ "iteration": 2376,
215
+ "learning_rate": 0.005471026326607908,
216
+ "loss": 0.42971483347090805,
217
+ "time": 17
218
+ },
219
+ {
220
+ "iteration": 2442,
221
+ "learning_rate": 0.005427906743771909,
222
+ "loss": 0.3851476808389028,
223
+ "time": 17
224
+ },
225
+ {
226
+ "iteration": 2508,
227
+ "learning_rate": 0.005384749066364625,
228
+ "loss": 0.4365899097738844,
229
+ "time": 17
230
+ },
231
+ {
232
+ "iteration": 2574,
233
+ "learning_rate": 0.005341552920874832,
234
+ "loss": 0.4140170074322007,
235
+ "time": 17
236
+ },
237
+ {
238
+ "iteration": 2640,
239
+ "learning_rate": 0.005298317926736824,
240
+ "loss": 0.3849283524534919,
241
+ "time": 17
242
+ },
243
+ {
244
+ "iteration": 2706,
245
+ "learning_rate": 0.005255043696131948,
246
+ "loss": 0.35316983520081546,
247
+ "time": 56
248
+ },
249
+ {
250
+ "iteration": 2772,
251
+ "learning_rate": 0.005211729833782679,
252
+ "loss": 0.39686580476435745,
253
+ "time": 17
254
+ },
255
+ {
256
+ "iteration": 2838,
257
+ "learning_rate": 0.005168375936738892,
258
+ "loss": 0.3573051295948751,
259
+ "time": 17
260
+ },
261
+ {
262
+ "iteration": 2904,
263
+ "learning_rate": 0.005124981594155956,
264
+ "loss": 0.36606889872839954,
265
+ "time": 17
266
+ },
267
+ {
268
+ "iteration": 2970,
269
+ "learning_rate": 0.0050815463870642645,
270
+ "loss": 0.38444702191786334,
271
+ "time": 17
272
+ },
273
+ {
274
+ "iteration": 3036,
275
+ "learning_rate": 0.005038069888129779,
276
+ "loss": 0.3912883044192285,
277
+ "time": 17
278
+ },
279
+ {
280
+ "iteration": 3102,
281
+ "learning_rate": 0.004994551661405151,
282
+ "loss": 0.36054686750426435,
283
+ "time": 17
284
+ },
285
+ {
286
+ "iteration": 3168,
287
+ "learning_rate": 0.004950991262070955,
288
+ "loss": 0.40620848446181324,
289
+ "time": 17
290
+ },
291
+ {
292
+ "iteration": 3234,
293
+ "learning_rate": 0.004907388236166539,
294
+ "loss": 0.37632201137867843,
295
+ "time": 17
296
+ },
297
+ {
298
+ "iteration": 3300,
299
+ "learning_rate": 0.004863742120309963,
300
+ "loss": 0.38854632436326053,
301
+ "time": 17
302
+ },
303
+ {
304
+ "iteration": 3366,
305
+ "learning_rate": 0.004820052441406486,
306
+ "loss": 0.35771139936916757,
307
+ "time": 56
308
+ },
309
+ {
310
+ "iteration": 3432,
311
+ "learning_rate": 0.004776318716344999,
312
+ "loss": 0.3556234233758666,
313
+ "time": 17
314
+ },
315
+ {
316
+ "iteration": 3498,
317
+ "learning_rate": 0.004732540451681778,
318
+ "loss": 0.3837462891683434,
319
+ "time": 17
320
+ },
321
+ {
322
+ "iteration": 3564,
323
+ "learning_rate": 0.0046887171433109,
324
+ "loss": 0.37028227385246393,
325
+ "time": 17
326
+ },
327
+ {
328
+ "iteration": 3630,
329
+ "learning_rate": 0.004644848276120601,
330
+ "loss": 0.3720193076314348,
331
+ "time": 17
332
+ },
333
+ {
334
+ "iteration": 3696,
335
+ "learning_rate": 0.004600933323634853,
336
+ "loss": 0.36002403588005993,
337
+ "time": 17
338
+ },
339
+ {
340
+ "iteration": 3762,
341
+ "learning_rate": 0.004556971747639307,
342
+ "loss": 0.36179465213508316,
343
+ "time": 17
344
+ },
345
+ {
346
+ "iteration": 3828,
347
+ "learning_rate": 0.004512962997790807,
348
+ "loss": 0.3650477422457753,
349
+ "time": 17
350
+ },
351
+ {
352
+ "iteration": 3894,
353
+ "learning_rate": 0.00446890651120952,
354
+ "loss": 0.40944175467346655,
355
+ "time": 17
356
+ },
357
+ {
358
+ "iteration": 3960,
359
+ "learning_rate": 0.00442480171205273,
360
+ "loss": 0.36483579648263526,
361
+ "time": 17
362
+ },
363
+ {
364
+ "iteration": 4026,
365
+ "learning_rate": 0.004380648011069259,
366
+ "loss": 0.37291523520693637,
367
+ "time": 56
368
+ },
369
+ {
370
+ "iteration": 4092,
371
+ "learning_rate": 0.004336444805133395,
372
+ "loss": 0.3564195998690345,
373
+ "time": 17
374
+ },
375
+ {
376
+ "iteration": 4158,
377
+ "learning_rate": 0.004292191476757167,
378
+ "loss": 0.3480916777343461,
379
+ "time": 17
380
+ },
381
+ {
382
+ "iteration": 4224,
383
+ "learning_rate": 0.004247887393579661,
384
+ "loss": 0.3464467760288354,
385
+ "time": 17
386
+ },
387
+ {
388
+ "iteration": 4290,
389
+ "learning_rate": 0.00420353190783206,
390
+ "loss": 0.3544142998077653,
391
+ "time": 17
392
+ },
393
+ {
394
+ "iteration": 4356,
395
+ "learning_rate": 0.004159124355776931,
396
+ "loss": 0.3618610099409566,
397
+ "time": 17
398
+ },
399
+ {
400
+ "iteration": 4422,
401
+ "learning_rate": 0.004114664057120194,
402
+ "loss": 0.3461018166307247,
403
+ "time": 17
404
+ },
405
+ {
406
+ "iteration": 4488,
407
+ "learning_rate": 0.0040701503143941165,
408
+ "loss": 0.3715127207564585,
409
+ "time": 17
410
+ },
411
+ {
412
+ "iteration": 4554,
413
+ "learning_rate": 0.004025582412309532,
414
+ "loss": 0.31820303653225757,
415
+ "time": 17
416
+ },
417
+ {
418
+ "iteration": 4620,
419
+ "learning_rate": 0.003980959617075325,
420
+ "loss": 0.3448241592356653,
421
+ "time": 17
422
+ },
423
+ {
424
+ "iteration": 4686,
425
+ "learning_rate": 0.003936281175683137,
426
+ "loss": 0.339410470967943,
427
+ "time": 56
428
+ },
429
+ {
430
+ "iteration": 4752,
431
+ "learning_rate": 0.0038915463151550254,
432
+ "loss": 0.32637814409805066,
433
+ "time": 17
434
+ },
435
+ {
436
+ "iteration": 4818,
437
+ "learning_rate": 0.0038467542417516725,
438
+ "loss": 0.3339586348244638,
439
+ "time": 17
440
+ },
441
+ {
442
+ "iteration": 4884,
443
+ "learning_rate": 0.0038019041401385328,
444
+ "loss": 0.3303933238441294,
445
+ "time": 17
446
+ },
447
+ {
448
+ "iteration": 4950,
449
+ "learning_rate": 0.0037569951725070984,
450
+ "loss": 0.33496128993503976,
451
+ "time": 17
452
+ },
453
+ {
454
+ "iteration": 5016,
455
+ "learning_rate": 0.003712026477648258,
456
+ "loss": 0.34117866962245014,
457
+ "time": 17
458
+ },
459
+ {
460
+ "iteration": 5082,
461
+ "learning_rate": 0.003666997169974418,
462
+ "loss": 0.3316851903994878,
463
+ "time": 17
464
+ },
465
+ {
466
+ "iteration": 5148,
467
+ "learning_rate": 0.003621906338486865,
468
+ "loss": 0.34518574652346695,
469
+ "time": 17
470
+ },
471
+ {
472
+ "iteration": 5214,
473
+ "learning_rate": 0.0035767530456844465,
474
+ "loss": 0.36809011774532724,
475
+ "time": 17
476
+ },
477
+ {
478
+ "iteration": 5280,
479
+ "learning_rate": 0.003531536326409414,
480
+ "loss": 0.30979487096721475,
481
+ "time": 17
482
+ },
483
+ {
484
+ "iteration": 5346,
485
+ "learning_rate": 0.0034862551866258248,
486
+ "loss": 0.29724421510190674,
487
+ "time": 56
488
+ },
489
+ {
490
+ "iteration": 5412,
491
+ "learning_rate": 0.0034409086021255568,
492
+ "loss": 0.30359613556753506,
493
+ "time": 17
494
+ },
495
+ {
496
+ "iteration": 5478,
497
+ "learning_rate": 0.0033954955171565035,
498
+ "loss": 0.31567062663309503,
499
+ "time": 17
500
+ },
501
+ {
502
+ "iteration": 5544,
503
+ "learning_rate": 0.003350014842967052,
504
+ "loss": 0.3159264549612999,
505
+ "time": 17
506
+ },
507
+ {
508
+ "iteration": 5610,
509
+ "learning_rate": 0.00330446545626039,
510
+ "loss": 0.32972304793921386,
511
+ "time": 17
512
+ },
513
+ {
514
+ "iteration": 5676,
515
+ "learning_rate": 0.0032588461975515794,
516
+ "loss": 0.32747726955197076,
517
+ "time": 17
518
+ },
519
+ {
520
+ "iteration": 5742,
521
+ "learning_rate": 0.0032131558694196835,
522
+ "loss": 0.3331180600957437,
523
+ "time": 17
524
+ },
525
+ {
526
+ "iteration": 5808,
527
+ "learning_rate": 0.00316739323464646,
528
+ "loss": 0.3216931912483591,
529
+ "time": 17
530
+ },
531
+ {
532
+ "iteration": 5874,
533
+ "learning_rate": 0.003121557014232329,
534
+ "loss": 0.31108140990589606,
535
+ "time": 17
536
+ },
537
+ {
538
+ "iteration": 5940,
539
+ "learning_rate": 0.003075645885279381,
540
+ "loss": 0.3476843400435014,
541
+ "time": 17
542
+ },
543
+ {
544
+ "iteration": 6006,
545
+ "learning_rate": 0.0030296584787301464,
546
+ "loss": 0.3147808247894952,
547
+ "time": 56
548
+ },
549
+ {
550
+ "iteration": 6072,
551
+ "learning_rate": 0.0029835933769497146,
552
+ "loss": 0.29407431275555584,
553
+ "time": 17
554
+ },
555
+ {
556
+ "iteration": 6138,
557
+ "learning_rate": 0.0029374491111374516,
558
+ "loss": 0.3113074411045421,
559
+ "time": 17
560
+ },
561
+ {
562
+ "iteration": 6204,
563
+ "learning_rate": 0.002891224158553134,
564
+ "loss": 0.31945200806314294,
565
+ "time": 17
566
+ },
567
+ {
568
+ "iteration": 6270,
569
+ "learning_rate": 0.0028449169395406335,
570
+ "loss": 0.3024889307491707,
571
+ "time": 17
572
+ },
573
+ {
574
+ "iteration": 6336,
575
+ "learning_rate": 0.0027985258143304473,
576
+ "loss": 0.3077298000906453,
577
+ "time": 17
578
+ },
579
+ {
580
+ "iteration": 6402,
581
+ "learning_rate": 0.0027520490796002686,
582
+ "loss": 0.3174598056710128,
583
+ "time": 17
584
+ },
585
+ {
586
+ "iteration": 6468,
587
+ "learning_rate": 0.0027054849647703584,
588
+ "loss": 0.31682668581153406,
589
+ "time": 17
590
+ },
591
+ {
592
+ "iteration": 6534,
593
+ "learning_rate": 0.002658831628007832,
594
+ "loss": 0.31622901716918655,
595
+ "time": 17
596
+ },
597
+ {
598
+ "iteration": 6600,
599
+ "learning_rate": 0.0026120871519108206,
600
+ "loss": 0.3189880008047277,
601
+ "time": 17
602
+ },
603
+ {
604
+ "iteration": 6666,
605
+ "learning_rate": 0.002565249538839995,
606
+ "loss": 0.30737172676758334,
607
+ "time": 55
608
+ },
609
+ {
610
+ "iteration": 6732,
611
+ "learning_rate": 0.002518316705860856,
612
+ "loss": 0.30364202956358594,
613
+ "time": 17
614
+ },
615
+ {
616
+ "iteration": 6798,
617
+ "learning_rate": 0.0024712864792555927,
618
+ "loss": 0.3042423761252201,
619
+ "time": 17
620
+ },
621
+ {
622
+ "iteration": 6864,
623
+ "learning_rate": 0.0024241565885579843,
624
+ "loss": 0.30408719182014465,
625
+ "time": 17
626
+ },
627
+ {
628
+ "iteration": 6930,
629
+ "learning_rate": 0.0023769246600586383,
630
+ "loss": 0.3092872028549512,
631
+ "time": 17
632
+ },
633
+ {
634
+ "iteration": 6996,
635
+ "learning_rate": 0.0023295882097207955,
636
+ "loss": 0.3124227968580795,
637
+ "time": 17
638
+ },
639
+ {
640
+ "iteration": 7062,
641
+ "learning_rate": 0.0022821446354386156,
642
+ "loss": 0.3095200009869807,
643
+ "time": 17
644
+ },
645
+ {
646
+ "iteration": 7128,
647
+ "learning_rate": 0.0022345912085602973,
648
+ "loss": 0.2929882648767847,
649
+ "time": 17
650
+ },
651
+ {
652
+ "iteration": 7194,
653
+ "learning_rate": 0.002186925064587103,
654
+ "loss": 0.29868403709296026,
655
+ "time": 17
656
+ },
657
+ {
658
+ "iteration": 7260,
659
+ "learning_rate": 0.00213914319294621,
660
+ "loss": 0.2986936226035609,
661
+ "time": 17
662
+ },
663
+ {
664
+ "iteration": 7326,
665
+ "learning_rate": 0.0020912424257198063,
666
+ "loss": 0.2850196925979672,
667
+ "time": 55
668
+ },
669
+ {
670
+ "iteration": 7392,
671
+ "learning_rate": 0.0020432194251945165,
672
+ "loss": 0.29734730901140155,
673
+ "time": 17
674
+ },
675
+ {
676
+ "iteration": 7458,
677
+ "learning_rate": 0.0019950706700735464,
678
+ "loss": 0.28972640543273,
679
+ "time": 17
680
+ },
681
+ {
682
+ "iteration": 7524,
683
+ "learning_rate": 0.0019467924401680456,
684
+ "loss": 0.2875184951858087,
685
+ "time": 17
686
+ },
687
+ {
688
+ "iteration": 7590,
689
+ "learning_rate": 0.0018983807993532375,
690
+ "loss": 0.2957809727751847,
691
+ "time": 17
692
+ },
693
+ {
694
+ "iteration": 7656,
695
+ "learning_rate": 0.001849831576537679,
696
+ "loss": 0.2980721592903137,
697
+ "time": 17
698
+ },
699
+ {
700
+ "iteration": 7722,
701
+ "learning_rate": 0.001801140344349055,
702
+ "loss": 0.3027712908206564,
703
+ "time": 17
704
+ },
705
+ {
706
+ "iteration": 7788,
707
+ "learning_rate": 0.0017523023951853762,
708
+ "loss": 0.28499442316365964,
709
+ "time": 17
710
+ },
711
+ {
712
+ "iteration": 7854,
713
+ "learning_rate": 0.0017033127142138424,
714
+ "loss": 0.2987309671712644,
715
+ "time": 17
716
+ },
717
+ {
718
+ "iteration": 7920,
719
+ "learning_rate": 0.0016541659488178335,
720
+ "loss": 0.26770277456803754,
721
+ "time": 17
722
+ },
723
+ {
724
+ "iteration": 7986,
725
+ "learning_rate": 0.0016048563738914987,
726
+ "loss": 0.2963839213956486,
727
+ "time": 56
728
+ },
729
+ {
730
+ "iteration": 8052,
731
+ "learning_rate": 0.0015553778522557154,
732
+ "loss": 0.28862772407856857,
733
+ "time": 17
734
+ },
735
+ {
736
+ "iteration": 8118,
737
+ "learning_rate": 0.0015057237893119167,
738
+ "loss": 0.289191347405766,
739
+ "time": 17
740
+ },
741
+ {
742
+ "iteration": 8184,
743
+ "learning_rate": 0.001455887080851767,
744
+ "loss": 0.28261390870267694,
745
+ "time": 17
746
+ },
747
+ {
748
+ "iteration": 8250,
749
+ "learning_rate": 0.001405860052688339,
750
+ "loss": 0.2820402629899256,
751
+ "time": 17
752
+ },
753
+ {
754
+ "iteration": 8316,
755
+ "learning_rate": 0.0013556343904508167,
756
+ "loss": 0.27681806819005444,
757
+ "time": 17
758
+ },
759
+ {
760
+ "iteration": 8382,
761
+ "learning_rate": 0.0013052010574659755,
762
+ "loss": 0.28346456203496817,
763
+ "time": 17
764
+ },
765
+ {
766
+ "iteration": 8448,
767
+ "learning_rate": 0.0012545501981024818,
768
+ "loss": 0.28531566533175384,
769
+ "time": 17
770
+ },
771
+ {
772
+ "iteration": 8514,
773
+ "learning_rate": 0.0012036710232313146,
774
+ "loss": 0.2773663525780042,
775
+ "time": 17
776
+ },
777
+ {
778
+ "iteration": 8580,
779
+ "learning_rate": 0.001152551673490202,
780
+ "loss": 0.2759557549249042,
781
+ "time": 17
782
+ },
783
+ {
784
+ "iteration": 8646,
785
+ "learning_rate": 0.001101179054734149,
786
+ "loss": 0.28256645595485513,
787
+ "time": 55
788
+ },
789
+ {
790
+ "iteration": 8712,
791
+ "learning_rate": 0.001049538638263786,
792
+ "loss": 0.25588500477147824,
793
+ "time": 17
794
+ },
795
+ {
796
+ "iteration": 8778,
797
+ "learning_rate": 0.0009976142159319802,
798
+ "loss": 0.2633866902553674,
799
+ "time": 17
800
+ },
801
+ {
802
+ "iteration": 8844,
803
+ "learning_rate": 0.0009453875967051474,
804
+ "loss": 0.2810885750434615,
805
+ "time": 17
806
+ },
807
+ {
808
+ "iteration": 8910,
809
+ "learning_rate": 0.0008928382261803273,
810
+ "loss": 0.29352239970908023,
811
+ "time": 17
812
+ },
813
+ {
814
+ "iteration": 8976,
815
+ "learning_rate": 0.0008399427031007692,
816
+ "loss": 0.2785730365325104,
817
+ "time": 17
818
+ },
819
+ {
820
+ "iteration": 9042,
821
+ "learning_rate": 0.0007866741557039857,
822
+ "loss": 0.2715013155883009,
823
+ "time": 17
824
+ },
825
+ {
826
+ "iteration": 9108,
827
+ "learning_rate": 0.000733001423458999,
828
+ "loss": 0.2897755198858001,
829
+ "time": 17
830
+ },
831
+ {
832
+ "iteration": 9174,
833
+ "learning_rate": 0.0006788879623420769,
834
+ "loss": 0.28466332026503305,
835
+ "time": 17
836
+ },
837
+ {
838
+ "iteration": 9240,
839
+ "learning_rate": 0.0006242903468670414,
840
+ "loss": 0.29275640732411184,
841
+ "time": 17
842
+ },
843
+ {
844
+ "iteration": 9306,
845
+ "learning_rate": 0.0005691561655547194,
846
+ "loss": 0.2849563895301385,
847
+ "time": 56
848
+ },
849
+ {
850
+ "iteration": 9372,
851
+ "learning_rate": 0.0005134209702062102,
852
+ "loss": 0.2861010967330499,
853
+ "time": 17
854
+ },
855
+ {
856
+ "iteration": 9438,
857
+ "learning_rate": 0.00045700368321870426,
858
+ "loss": 0.270064733245156,
859
+ "time": 17
860
+ },
861
+ {
862
+ "iteration": 9504,
863
+ "learning_rate": 0.00039979935373470364,
864
+ "loss": 0.27848173813386395,
865
+ "time": 17
866
+ },
867
+ {
868
+ "iteration": 9570,
869
+ "learning_rate": 0.0003416670376575878,
870
+ "loss": 0.2818257063627243,
871
+ "time": 17
872
+ },
873
+ {
874
+ "iteration": 9636,
875
+ "learning_rate": 0.00028240788709373694,
876
+ "loss": 0.27441354547486163,
877
+ "time": 17
878
+ },
879
+ {
880
+ "iteration": 9702,
881
+ "learning_rate": 0.00022172108202883427,
882
+ "loss": 0.28160650350830774,
883
+ "time": 17
884
+ },
885
+ {
886
+ "iteration": 9768,
887
+ "learning_rate": 0.00015909998444366545,
888
+ "loss": 0.2616423497145826,
889
+ "time": 17
890
+ },
891
+ {
892
+ "iteration": 9834,
893
+ "learning_rate": 9.351193860109754e-05,
894
+ "loss": 0.25395023055148847,
895
+ "time": 17
896
+ },
897
+ {
898
+ "iteration": 9900,
899
+ "learning_rate": 2.1485357168916894e-05,
900
+ "loss": 0.27487681806087494,
901
+ "time": 17
902
+ }
903
+ ],
904
+ "validation": [
905
+ {
906
+ "iteration": 661,
907
+ "mIoU": 40.198292438474695,
908
+ "best_valid_mIoU": 40.198292438474695,
909
+ "time": 38
910
+ },
911
+ {
912
+ "iteration": 1322,
913
+ "mIoU": 46.931187315067184,
914
+ "best_valid_mIoU": 46.931187315067184,
915
+ "time": 38
916
+ },
917
+ {
918
+ "iteration": 1983,
919
+ "mIoU": 50.79451292533678,
920
+ "best_valid_mIoU": 50.79451292533678,
921
+ "time": 38
922
+ },
923
+ {
924
+ "iteration": 2644,
925
+ "mIoU": 51.250194510308035,
926
+ "best_valid_mIoU": 51.250194510308035,
927
+ "time": 38
928
+ },
929
+ {
930
+ "iteration": 3305,
931
+ "mIoU": 49.77124635876825,
932
+ "best_valid_mIoU": 51.250194510308035,
933
+ "time": 38
934
+ },
935
+ {
936
+ "iteration": 3966,
937
+ "mIoU": 53.02794609521912,
938
+ "best_valid_mIoU": 53.02794609521912,
939
+ "time": 38
940
+ },
941
+ {
942
+ "iteration": 4627,
943
+ "mIoU": 53.534273853159654,
944
+ "best_valid_mIoU": 53.534273853159654,
945
+ "time": 38
946
+ },
947
+ {
948
+ "iteration": 5288,
949
+ "mIoU": 53.686922599568256,
950
+ "best_valid_mIoU": 53.686922599568256,
951
+ "time": 38
952
+ },
953
+ {
954
+ "iteration": 5949,
955
+ "mIoU": 53.963820566331755,
956
+ "best_valid_mIoU": 53.963820566331755,
957
+ "time": 38
958
+ },
959
+ {
960
+ "iteration": 6610,
961
+ "mIoU": 53.61721461812275,
962
+ "best_valid_mIoU": 53.963820566331755,
963
+ "time": 37
964
+ },
965
+ {
966
+ "iteration": 7271,
967
+ "mIoU": 53.69686452916306,
968
+ "best_valid_mIoU": 53.963820566331755,
969
+ "time": 37
970
+ },
971
+ {
972
+ "iteration": 7932,
973
+ "mIoU": 54.369177880930344,
974
+ "best_valid_mIoU": 54.369177880930344,
975
+ "time": 38
976
+ },
977
+ {
978
+ "iteration": 8593,
979
+ "mIoU": 54.07138275328432,
980
+ "best_valid_mIoU": 54.369177880930344,
981
+ "time": 37
982
+ },
983
+ {
984
+ "iteration": 9254,
985
+ "mIoU": 55.11902925498748,
986
+ "best_valid_mIoU": 55.11902925498748,
987
+ "time": 38
988
+ },
989
+ {
990
+ "iteration": 9915,
991
+ "mIoU": 55.089798690022896,
992
+ "best_valid_mIoU": 55.11902925498748,
993
+ "time": 38
994
+ }
995
+ ]
996
+ }
experiments/data/ResNet50@Puzzle@optimal.json ADDED
@@ -0,0 +1,1761 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": [
3
+ {
4
+ "iteration": 66,
5
+ "learning_rate": 0.09940979100610842,
6
+ "alpha": 0.026222894604135148,
7
+ "loss": 0.5450071606672171,
8
+ "class_loss": 0.2719600424170494,
9
+ "p_class_loss": 0.27158846322334174,
10
+ "re_loss": 0.07284604478627443,
11
+ "conf_loss": 0.0,
12
+ "time": 17
13
+ },
14
+ {
15
+ "iteration": 132,
16
+ "learning_rate": 0.09881010321233788,
17
+ "alpha": 0.0794755421079173,
18
+ "loss": 0.3239706930789081,
19
+ "class_loss": 0.15707427895430362,
20
+ "p_class_loss": 0.1604394937554995,
21
+ "re_loss": 0.07997607191403706,
22
+ "conf_loss": 0.0,
23
+ "time": 15
24
+ },
25
+ {
26
+ "iteration": 198,
27
+ "learning_rate": 0.09821001074703892,
28
+ "alpha": 0.13272818961169944,
29
+ "loss": 0.26553548420920514,
30
+ "class_loss": 0.12469609330097835,
31
+ "p_class_loss": 0.1285738782449202,
32
+ "re_loss": 0.0920192040503025,
33
+ "conf_loss": 0.0,
34
+ "time": 15
35
+ },
36
+ {
37
+ "iteration": 264,
38
+ "learning_rate": 0.09760951058596966,
39
+ "alpha": 0.1859808371154816,
40
+ "loss": 0.2733975572116447,
41
+ "class_loss": 0.1247994712356365,
42
+ "p_class_loss": 0.12962091635122444,
43
+ "re_loss": 0.10199228391954393,
44
+ "conf_loss": 0.0,
45
+ "time": 15
46
+ },
47
+ {
48
+ "iteration": 330,
49
+ "learning_rate": 0.09700859966144519,
50
+ "alpha": 0.23923348461926378,
51
+ "loss": 0.2663032448653019,
52
+ "class_loss": 0.1184216094287959,
53
+ "p_class_loss": 0.12372892045161941,
54
+ "re_loss": 0.10121869961872246,
55
+ "conf_loss": 0.0,
56
+ "time": 15
57
+ },
58
+ {
59
+ "iteration": 396,
60
+ "learning_rate": 0.09640727486140988,
61
+ "alpha": 0.29248613212304586,
62
+ "loss": 0.26374987467671884,
63
+ "class_loss": 0.11474183709783987,
64
+ "p_class_loss": 0.11929779454614177,
65
+ "re_loss": 0.10162909678889043,
66
+ "conf_loss": 0.0,
67
+ "time": 15
68
+ },
69
+ {
70
+ "iteration": 462,
71
+ "learning_rate": 0.09580553302848344,
72
+ "alpha": 0.3457387796268281,
73
+ "loss": 0.24972676779284622,
74
+ "class_loss": 0.10515463803753708,
75
+ "p_class_loss": 0.10960515701409543,
76
+ "re_loss": 0.10109633884646675,
77
+ "conf_loss": 0.0,
78
+ "time": 15
79
+ },
80
+ {
81
+ "iteration": 528,
82
+ "learning_rate": 0.09520337095897968,
83
+ "alpha": 0.3989914271306102,
84
+ "loss": 0.24802840184984784,
85
+ "class_loss": 0.10240552929992025,
86
+ "p_class_loss": 0.1072990692813288,
87
+ "re_loss": 0.0960450272329829,
88
+ "conf_loss": 0.0,
89
+ "time": 15
90
+ },
91
+ {
92
+ "iteration": 594,
93
+ "learning_rate": 0.09460078540189698,
94
+ "alpha": 0.45224407463439237,
95
+ "loss": 0.24083833215814648,
96
+ "class_loss": 0.09823239205235784,
97
+ "p_class_loss": 0.10228147075483293,
98
+ "re_loss": 0.0891773933262536,
99
+ "conf_loss": 0.0,
100
+ "time": 15
101
+ },
102
+ {
103
+ "iteration": 660,
104
+ "learning_rate": 0.09399777305787926,
105
+ "alpha": 0.5054967221381744,
106
+ "loss": 0.23403261895432617,
107
+ "class_loss": 0.09296581589362839,
108
+ "p_class_loss": 0.09666790310857874,
109
+ "re_loss": 0.08786474913358688,
110
+ "conf_loss": 0.0,
111
+ "time": 15
112
+ },
113
+ {
114
+ "iteration": 726,
115
+ "learning_rate": 0.09339433057814689,
116
+ "alpha": 0.5587493696419568,
117
+ "loss": 0.22584524231426645,
118
+ "class_loss": 0.08619872390320807,
119
+ "p_class_loss": 0.09082961042947842,
120
+ "re_loss": 0.08733003225290414,
121
+ "conf_loss": 0.0,
122
+ "time": 34
123
+ },
124
+ {
125
+ "iteration": 792,
126
+ "learning_rate": 0.09279045456339578,
127
+ "alpha": 0.6120020171457388,
128
+ "loss": 0.2238871936093677,
129
+ "class_loss": 0.08420200346771514,
130
+ "p_class_loss": 0.0881081625367656,
131
+ "re_loss": 0.08435557867315682,
132
+ "conf_loss": 0.0,
133
+ "time": 15
134
+ },
135
+ {
136
+ "iteration": 858,
137
+ "learning_rate": 0.09218614156266403,
138
+ "alpha": 0.6652546646495209,
139
+ "loss": 0.25126359182776825,
140
+ "class_loss": 0.09570740976116875,
141
+ "p_class_loss": 0.09976435345456455,
142
+ "re_loss": 0.08390260583749323,
143
+ "conf_loss": 0.0,
144
+ "time": 15
145
+ },
146
+ {
147
+ "iteration": 924,
148
+ "learning_rate": 0.0915813880721646,
149
+ "alpha": 0.718507312153303,
150
+ "loss": 0.23258026903777412,
151
+ "class_loss": 0.087085176597942,
152
+ "p_class_loss": 0.09137819690460508,
153
+ "re_loss": 0.07531174616605947,
154
+ "conf_loss": 0.0,
155
+ "time": 15
156
+ },
157
+ {
158
+ "iteration": 990,
159
+ "learning_rate": 0.09097619053408289,
160
+ "alpha": 0.7717599596570852,
161
+ "loss": 0.24150935312112173,
162
+ "class_loss": 0.08869045521273758,
163
+ "p_class_loss": 0.09336557188494639,
164
+ "re_loss": 0.07710366176836418,
165
+ "conf_loss": 0.0,
166
+ "time": 15
167
+ },
168
+ {
169
+ "iteration": 1056,
170
+ "learning_rate": 0.0903705453353378,
171
+ "alpha": 0.8250126071608674,
172
+ "loss": 0.2436313062454715,
173
+ "class_loss": 0.08870799054927898,
174
+ "p_class_loss": 0.09312053735960614,
175
+ "re_loss": 0.07488705850008762,
176
+ "conf_loss": 0.0,
177
+ "time": 15
178
+ },
179
+ {
180
+ "iteration": 1122,
181
+ "learning_rate": 0.08976444880630503,
182
+ "alpha": 0.8782652546646494,
183
+ "loss": 0.2431275395281387,
184
+ "class_loss": 0.08851562299285874,
185
+ "p_class_loss": 0.09230115146122196,
186
+ "re_loss": 0.07094635001637718,
187
+ "conf_loss": 0.0,
188
+ "time": 15
189
+ },
190
+ {
191
+ "iteration": 1188,
192
+ "learning_rate": 0.0891578972195009,
193
+ "alpha": 0.9315179021684319,
194
+ "loss": 0.23833946296662994,
195
+ "class_loss": 0.08463501489975235,
196
+ "p_class_loss": 0.08869763192805377,
197
+ "re_loss": 0.06980998983437364,
198
+ "conf_loss": 0.0,
199
+ "time": 15
200
+ },
201
+ {
202
+ "iteration": 1254,
203
+ "learning_rate": 0.08855088678822559,
204
+ "alpha": 0.9847705496722139,
205
+ "loss": 0.25117628118305496,
206
+ "class_loss": 0.09045374653104579,
207
+ "p_class_loss": 0.09488564876444412,
208
+ "re_loss": 0.0668236751560912,
209
+ "conf_loss": 0.0,
210
+ "time": 15
211
+ },
212
+ {
213
+ "iteration": 1320,
214
+ "learning_rate": 0.08794341366516371,
215
+ "alpha": 1.038023197175996,
216
+ "loss": 0.24357454298120557,
217
+ "class_loss": 0.08597620096847866,
218
+ "p_class_loss": 0.09024365472071098,
219
+ "re_loss": 0.06491588569726005,
220
+ "conf_loss": 0.0,
221
+ "time": 15
222
+ },
223
+ {
224
+ "iteration": 1386,
225
+ "learning_rate": 0.08733547394094103,
226
+ "alpha": 1.0912758446797781,
227
+ "loss": 0.23244541906046146,
228
+ "class_loss": 0.0796355206632253,
229
+ "p_class_loss": 0.08425782045180147,
230
+ "re_loss": 0.0628145280096567,
231
+ "conf_loss": 0.0,
232
+ "time": 34
233
+ },
234
+ {
235
+ "iteration": 1452,
236
+ "learning_rate": 0.08672706364263531,
237
+ "alpha": 1.1445284921835603,
238
+ "loss": 0.2405217303471132,
239
+ "class_loss": 0.08292913431245269,
240
+ "p_class_loss": 0.0869243981486017,
241
+ "re_loss": 0.06178495711223646,
242
+ "conf_loss": 0.0,
243
+ "time": 15
244
+ },
245
+ {
246
+ "iteration": 1518,
247
+ "learning_rate": 0.08611817873223943,
248
+ "alpha": 1.1977811396873423,
249
+ "loss": 0.2408737176747033,
250
+ "class_loss": 0.08204288509759036,
251
+ "p_class_loss": 0.08627836643294855,
252
+ "re_loss": 0.06059345631211093,
253
+ "conf_loss": 0.0,
254
+ "time": 15
255
+ },
256
+ {
257
+ "iteration": 1584,
258
+ "learning_rate": 0.08550881510507505,
259
+ "alpha": 1.2510337871911246,
260
+ "loss": 0.23835166430834567,
261
+ "class_loss": 0.08173276551745155,
262
+ "p_class_loss": 0.08601413226940414,
263
+ "re_loss": 0.05644771016456864,
264
+ "conf_loss": 0.0,
265
+ "time": 15
266
+ },
267
+ {
268
+ "iteration": 1650,
269
+ "learning_rate": 0.08489896858815486,
270
+ "alpha": 1.304286434694907,
271
+ "loss": 0.24540752917528152,
272
+ "class_loss": 0.08316354662405723,
273
+ "p_class_loss": 0.08685451988695246,
274
+ "re_loss": 0.057813251221721824,
275
+ "conf_loss": 0.0,
276
+ "time": 15
277
+ },
278
+ {
279
+ "iteration": 1716,
280
+ "learning_rate": 0.08428863493849083,
281
+ "alpha": 1.3575390821986888,
282
+ "loss": 0.2451987544243986,
283
+ "class_loss": 0.08187094438030865,
284
+ "p_class_loss": 0.08626364069906148,
285
+ "re_loss": 0.05675332694116867,
286
+ "conf_loss": 0.0,
287
+ "time": 15
288
+ },
289
+ {
290
+ "iteration": 1782,
291
+ "learning_rate": 0.08367780984134703,
292
+ "alpha": 1.4107917297024708,
293
+ "loss": 0.25886295261708175,
294
+ "class_loss": 0.08759044223662579,
295
+ "p_class_loss": 0.09151475345998099,
296
+ "re_loss": 0.05651629552470915,
297
+ "conf_loss": 0.0,
298
+ "time": 15
299
+ },
300
+ {
301
+ "iteration": 1848,
302
+ "learning_rate": 0.08306648890843393,
303
+ "alpha": 1.4640443772062532,
304
+ "loss": 0.25099986430370447,
305
+ "class_loss": 0.08509243268406752,
306
+ "p_class_loss": 0.08909717354584824,
307
+ "re_loss": 0.052473024944915916,
308
+ "conf_loss": 0.0,
309
+ "time": 15
310
+ },
311
+ {
312
+ "iteration": 1914,
313
+ "learning_rate": 0.08245466767604248,
314
+ "alpha": 1.5172970247100355,
315
+ "loss": 0.2478150702787168,
316
+ "class_loss": 0.0831136822023175,
317
+ "p_class_loss": 0.08717884315234242,
318
+ "re_loss": 0.05110970314479235,
319
+ "conf_loss": 0.0,
320
+ "time": 15
321
+ },
322
+ {
323
+ "iteration": 1980,
324
+ "learning_rate": 0.0818423416031146,
325
+ "alpha": 1.5705496722138175,
326
+ "loss": 0.2568096685590166,
327
+ "class_loss": 0.08583537370643833,
328
+ "p_class_loss": 0.08992152694951404,
329
+ "re_loss": 0.051602302570686195,
330
+ "conf_loss": 0.0,
331
+ "time": 15
332
+ },
333
+ {
334
+ "iteration": 2046,
335
+ "learning_rate": 0.08122950606924835,
336
+ "alpha": 1.6238023197175997,
337
+ "loss": 0.24313921865188715,
338
+ "class_loss": 0.0795568609327981,
339
+ "p_class_loss": 0.08352077148403182,
340
+ "re_loss": 0.04930350325550094,
341
+ "conf_loss": 0.0,
342
+ "time": 34
343
+ },
344
+ {
345
+ "iteration": 2112,
346
+ "learning_rate": 0.0806161563726341,
347
+ "alpha": 1.677054967221382,
348
+ "loss": 0.25829118715994287,
349
+ "class_loss": 0.08546251916524136,
350
+ "p_class_loss": 0.08965610639389718,
351
+ "re_loss": 0.04959405699011051,
352
+ "conf_loss": 0.0,
353
+ "time": 15
354
+ },
355
+ {
356
+ "iteration": 2178,
357
+ "learning_rate": 0.08000228772791923,
358
+ "alpha": 1.7303076147251637,
359
+ "loss": 0.24346150593324142,
360
+ "class_loss": 0.07971308273122166,
361
+ "p_class_loss": 0.08370428554939502,
362
+ "re_loss": 0.04626408295536583,
363
+ "conf_loss": 0.0,
364
+ "time": 15
365
+ },
366
+ {
367
+ "iteration": 2244,
368
+ "learning_rate": 0.07938789526399825,
369
+ "alpha": 1.783560262228946,
370
+ "loss": 0.25505450051842316,
371
+ "class_loss": 0.08342806740917942,
372
+ "p_class_loss": 0.08767575945592287,
373
+ "re_loss": 0.04707317347779418,
374
+ "conf_loss": 0.0,
375
+ "time": 15
376
+ },
377
+ {
378
+ "iteration": 2310,
379
+ "learning_rate": 0.07877297402172462,
380
+ "alpha": 1.8368129097327284,
381
+ "loss": 0.2539670237086036,
382
+ "class_loss": 0.08332897248593243,
383
+ "p_class_loss": 0.0879055294913776,
384
+ "re_loss": 0.0450384822024992,
385
+ "conf_loss": 0.0,
386
+ "time": 15
387
+ },
388
+ {
389
+ "iteration": 2376,
390
+ "learning_rate": 0.07815751895154155,
391
+ "alpha": 1.8900655572365106,
392
+ "loss": 0.2583456201986833,
393
+ "class_loss": 0.08406420785820845,
394
+ "p_class_loss": 0.08900690349665555,
395
+ "re_loss": 0.04511673491673939,
396
+ "conf_loss": 0.0,
397
+ "time": 15
398
+ },
399
+ {
400
+ "iteration": 2442,
401
+ "learning_rate": 0.07754152491102728,
402
+ "alpha": 1.9433182047402924,
403
+ "loss": 0.25982668544306897,
404
+ "class_loss": 0.08582925977128925,
405
+ "p_class_loss": 0.08980320749635046,
406
+ "re_loss": 0.04332522602018082,
407
+ "conf_loss": 0.0,
408
+ "time": 15
409
+ },
410
+ {
411
+ "iteration": 2508,
412
+ "learning_rate": 0.0769249866623518,
413
+ "alpha": 1.9965708522440746,
414
+ "loss": 0.2634853637128165,
415
+ "class_loss": 0.0871019008936304,
416
+ "p_class_loss": 0.09112730616647186,
417
+ "re_loss": 0.04271891459145329,
418
+ "conf_loss": 0.0,
419
+ "time": 15
420
+ },
421
+ {
422
+ "iteration": 2574,
423
+ "learning_rate": 0.07630789886964046,
424
+ "alpha": 2.049823499747857,
425
+ "loss": 0.2545958874803601,
426
+ "class_loss": 0.08146914292239782,
427
+ "p_class_loss": 0.08554070476781238,
428
+ "re_loss": 0.04272544725487629,
429
+ "conf_loss": 0.0,
430
+ "time": 15
431
+ },
432
+ {
433
+ "iteration": 2640,
434
+ "learning_rate": 0.07569025609624035,
435
+ "alpha": 2.1030761472516386,
436
+ "loss": 0.25830947878685867,
437
+ "class_loss": 0.08550456183200533,
438
+ "p_class_loss": 0.089429453410434,
439
+ "re_loss": 0.039643184366551315,
440
+ "conf_loss": 0.0,
441
+ "time": 15
442
+ },
443
+ {
444
+ "iteration": 2706,
445
+ "learning_rate": 0.07507205280188498,
446
+ "alpha": 2.1563287947554204,
447
+ "loss": 0.2610703661586299,
448
+ "class_loss": 0.0842935936807683,
449
+ "p_class_loss": 0.08812702983392007,
450
+ "re_loss": 0.041114315701027714,
451
+ "conf_loss": 0.0,
452
+ "time": 34
453
+ },
454
+ {
455
+ "iteration": 2772,
456
+ "learning_rate": 0.07445328333975257,
457
+ "alpha": 2.2095814422592035,
458
+ "loss": 0.25248731650186307,
459
+ "class_loss": 0.08096548768155502,
460
+ "p_class_loss": 0.08472800593484532,
461
+ "re_loss": 0.03927994846846118,
462
+ "conf_loss": 0.0,
463
+ "time": 15
464
+ },
465
+ {
466
+ "iteration": 2838,
467
+ "learning_rate": 0.07383394195341275,
468
+ "alpha": 2.2628340897629853,
469
+ "loss": 0.25395778995571716,
470
+ "class_loss": 0.08164638410689253,
471
+ "p_class_loss": 0.08568226636359186,
472
+ "re_loss": 0.03829048912633549,
473
+ "conf_loss": 0.0,
474
+ "time": 15
475
+ },
476
+ {
477
+ "iteration": 2904,
478
+ "learning_rate": 0.07321402277365652,
479
+ "alpha": 2.3160867372667675,
480
+ "loss": 0.26523306446545053,
481
+ "class_loss": 0.08443768785306902,
482
+ "p_class_loss": 0.08837210443435294,
483
+ "re_loss": 0.03990701140102112,
484
+ "conf_loss": 0.0,
485
+ "time": 15
486
+ },
487
+ {
488
+ "iteration": 2970,
489
+ "learning_rate": 0.07259351981520377,
490
+ "alpha": 2.369339384770549,
491
+ "loss": 0.2607404598684022,
492
+ "class_loss": 0.08362882471445834,
493
+ "p_class_loss": 0.08754278538805066,
494
+ "re_loss": 0.03781399904101184,
495
+ "conf_loss": 0.0,
496
+ "time": 15
497
+ },
498
+ {
499
+ "iteration": 3036,
500
+ "learning_rate": 0.07197242697328256,
501
+ "alpha": 2.4225920322743315,
502
+ "loss": 0.2754637786384785,
503
+ "class_loss": 0.08927830788448002,
504
+ "p_class_loss": 0.0934642262079499,
505
+ "re_loss": 0.03827794217927889,
506
+ "conf_loss": 0.0,
507
+ "time": 15
508
+ },
509
+ {
510
+ "iteration": 3102,
511
+ "learning_rate": 0.07135073802007359,
512
+ "alpha": 2.4758446797781133,
513
+ "loss": 0.26902585860454675,
514
+ "class_loss": 0.08719981219055074,
515
+ "p_class_loss": 0.09129711308262566,
516
+ "re_loss": 0.036564326252449646,
517
+ "conf_loss": 0.0,
518
+ "time": 15
519
+ },
520
+ {
521
+ "iteration": 3168,
522
+ "learning_rate": 0.07072844660101366,
523
+ "alpha": 2.5290973272818964,
524
+ "loss": 0.2728153695211266,
525
+ "class_loss": 0.09009763039648533,
526
+ "p_class_loss": 0.09386470744555647,
527
+ "re_loss": 0.03513314775332357,
528
+ "conf_loss": 0.0,
529
+ "time": 15
530
+ },
531
+ {
532
+ "iteration": 3234,
533
+ "learning_rate": 0.07010554623095056,
534
+ "alpha": 2.5823499747856786,
535
+ "loss": 0.2590617094979142,
536
+ "class_loss": 0.08220596571989132,
537
+ "p_class_loss": 0.0865419895924402,
538
+ "re_loss": 0.03496952448040247,
539
+ "conf_loss": 0.0,
540
+ "time": 15
541
+ },
542
+ {
543
+ "iteration": 3300,
544
+ "learning_rate": 0.06948203029014233,
545
+ "alpha": 2.6356026222894613,
546
+ "loss": 0.2650026462294839,
547
+ "class_loss": 0.08538902658178951,
548
+ "p_class_loss": 0.08923049982298505,
549
+ "re_loss": 0.03429930281797142,
550
+ "conf_loss": 0.0,
551
+ "time": 15
552
+ },
553
+ {
554
+ "iteration": 3366,
555
+ "learning_rate": 0.06885789202009267,
556
+ "alpha": 2.6888552697932426,
557
+ "loss": 0.2514105369195794,
558
+ "class_loss": 0.07832020476008907,
559
+ "p_class_loss": 0.08229877698150548,
560
+ "re_loss": 0.03377311815027938,
561
+ "conf_loss": 0.0,
562
+ "time": 34
563
+ },
564
+ {
565
+ "iteration": 3432,
566
+ "learning_rate": 0.06823312451921427,
567
+ "alpha": 2.742107917297025,
568
+ "loss": 0.2762194709344344,
569
+ "class_loss": 0.08930381805156216,
570
+ "p_class_loss": 0.09330784687490175,
571
+ "re_loss": 0.03413160752053514,
572
+ "conf_loss": 0.0,
573
+ "time": 15
574
+ },
575
+ {
576
+ "iteration": 3498,
577
+ "learning_rate": 0.06760772073831112,
578
+ "alpha": 2.7953605648008066,
579
+ "loss": 0.2590884956898111,
580
+ "class_loss": 0.08126910369504582,
581
+ "p_class_loss": 0.08468272192685893,
582
+ "re_loss": 0.03332559208413868,
583
+ "conf_loss": 0.0,
584
+ "time": 15
585
+ },
586
+ {
587
+ "iteration": 3564,
588
+ "learning_rate": 0.06698167347587,
589
+ "alpha": 2.8486132123045893,
590
+ "loss": 0.28580498176090646,
591
+ "class_loss": 0.09190800915839094,
592
+ "p_class_loss": 0.0961967549766555,
593
+ "re_loss": 0.0343063265988321,
594
+ "conf_loss": 0.0,
595
+ "time": 15
596
+ },
597
+ {
598
+ "iteration": 3630,
599
+ "learning_rate": 0.06635497537315145,
600
+ "alpha": 2.901865859808371,
601
+ "loss": 0.26933442575461936,
602
+ "class_loss": 0.08560791092388557,
603
+ "p_class_loss": 0.09018072485923767,
604
+ "re_loss": 0.03223752086474137,
605
+ "conf_loss": 0.0,
606
+ "time": 15
607
+ },
608
+ {
609
+ "iteration": 3696,
610
+ "learning_rate": 0.06572761890906934,
611
+ "alpha": 2.9551185073121538,
612
+ "loss": 0.2647725167599591,
613
+ "class_loss": 0.08450695787641135,
614
+ "p_class_loss": 0.08811029029840772,
615
+ "re_loss": 0.031185046995453762,
616
+ "conf_loss": 0.0,
617
+ "time": 15
618
+ },
619
+ {
620
+ "iteration": 3762,
621
+ "learning_rate": 0.06509959639484725,
622
+ "alpha": 3.008371154815936,
623
+ "loss": 0.2703752718640096,
624
+ "class_loss": 0.08654467377698782,
625
+ "p_class_loss": 0.09070696501117764,
626
+ "re_loss": 0.030954612701228172,
627
+ "conf_loss": 0.0,
628
+ "time": 15
629
+ },
630
+ {
631
+ "iteration": 3828,
632
+ "learning_rate": 0.0644708999684401,
633
+ "alpha": 3.061623802319718,
634
+ "loss": 0.27522876249118283,
635
+ "class_loss": 0.08832836602673386,
636
+ "p_class_loss": 0.09207907070716222,
637
+ "re_loss": 0.030969640804511128,
638
+ "conf_loss": 0.0,
639
+ "time": 15
640
+ },
641
+ {
642
+ "iteration": 3894,
643
+ "learning_rate": 0.06384152158870743,
644
+ "alpha": 3.1148764498234995,
645
+ "loss": 0.27678272624810535,
646
+ "class_loss": 0.08827377630002571,
647
+ "p_class_loss": 0.09211757525124332,
648
+ "re_loss": 0.03094666756012223,
649
+ "conf_loss": 0.0,
650
+ "time": 15
651
+ },
652
+ {
653
+ "iteration": 3960,
654
+ "learning_rate": 0.06321145302932472,
655
+ "alpha": 3.1681290973272813,
656
+ "loss": 0.27723487918124057,
657
+ "class_loss": 0.08937885324386033,
658
+ "p_class_loss": 0.09317678653381088,
659
+ "re_loss": 0.029887577208379906,
660
+ "conf_loss": 0.0,
661
+ "time": 15
662
+ },
663
+ {
664
+ "iteration": 4026,
665
+ "learning_rate": 0.06258068587241798,
666
+ "alpha": 3.221381744831064,
667
+ "loss": 0.2771874015981501,
668
+ "class_loss": 0.08797728405757384,
669
+ "p_class_loss": 0.09164950229001767,
670
+ "re_loss": 0.030283973467620937,
671
+ "conf_loss": 0.0,
672
+ "time": 34
673
+ },
674
+ {
675
+ "iteration": 4092,
676
+ "learning_rate": 0.061949211501905646,
677
+ "alpha": 3.274634392334846,
678
+ "loss": 0.2782447882222407,
679
+ "class_loss": 0.08838838638004029,
680
+ "p_class_loss": 0.09245423684743317,
681
+ "re_loss": 0.02974452916532755,
682
+ "conf_loss": 0.0,
683
+ "time": 15
684
+ },
685
+ {
686
+ "iteration": 4158,
687
+ "learning_rate": 0.061317021096530956,
688
+ "alpha": 3.3278870398386284,
689
+ "loss": 0.2727491236997373,
690
+ "class_loss": 0.08787473370179985,
691
+ "p_class_loss": 0.09178147329525514,
692
+ "re_loss": 0.027973051944916897,
693
+ "conf_loss": 0.0,
694
+ "time": 15
695
+ },
696
+ {
697
+ "iteration": 4224,
698
+ "learning_rate": 0.06068410562256659,
699
+ "alpha": 3.381139687342411,
700
+ "loss": 0.2738724262876944,
701
+ "class_loss": 0.08723411923556616,
702
+ "p_class_loss": 0.09128672347375841,
703
+ "re_loss": 0.028201025120462433,
704
+ "conf_loss": 0.0,
705
+ "time": 15
706
+ },
707
+ {
708
+ "iteration": 4290,
709
+ "learning_rate": 0.06005045582617229,
710
+ "alpha": 3.4343923348461924,
711
+ "loss": 0.2812728545430935,
712
+ "class_loss": 0.0891692392302282,
713
+ "p_class_loss": 0.09315378151156685,
714
+ "re_loss": 0.028813116534641296,
715
+ "conf_loss": 0.0,
716
+ "time": 15
717
+ },
718
+ {
719
+ "iteration": 4356,
720
+ "learning_rate": 0.05941606222538473,
721
+ "alpha": 3.487644982349974,
722
+ "loss": 0.2799885706468062,
723
+ "class_loss": 0.09117461063645103,
724
+ "p_class_loss": 0.09505547481504353,
725
+ "re_loss": 0.026883359800911312,
726
+ "conf_loss": 0.0,
727
+ "time": 15
728
+ },
729
+ {
730
+ "iteration": 4422,
731
+ "learning_rate": 0.05878091510171705,
732
+ "alpha": 3.5408976298537564,
733
+ "loss": 0.2824030134714011,
734
+ "class_loss": 0.09092485938559879,
735
+ "p_class_loss": 0.09484707795535073,
736
+ "re_loss": 0.027291545870177673,
737
+ "conf_loss": 0.0,
738
+ "time": 15
739
+ },
740
+ {
741
+ "iteration": 4488,
742
+ "learning_rate": 0.05814500449134452,
743
+ "alpha": 3.594150277357539,
744
+ "loss": 0.2726154167092208,
745
+ "class_loss": 0.08773354384483713,
746
+ "p_class_loss": 0.09125803580338304,
747
+ "re_loss": 0.026050779912056343,
748
+ "conf_loss": 0.0,
749
+ "time": 15
750
+ },
751
+ {
752
+ "iteration": 4554,
753
+ "learning_rate": 0.05750832017585045,
754
+ "alpha": 3.6474029248613213,
755
+ "loss": 0.27235606245019217,
756
+ "class_loss": 0.08726302353721677,
757
+ "p_class_loss": 0.09131332960995761,
758
+ "re_loss": 0.025711489756676285,
759
+ "conf_loss": 0.0,
760
+ "time": 15
761
+ },
762
+ {
763
+ "iteration": 4620,
764
+ "learning_rate": 0.05687085167250464,
765
+ "alpha": 3.700655572365103,
766
+ "loss": 0.2818877604423147,
767
+ "class_loss": 0.09109943636664838,
768
+ "p_class_loss": 0.09480206284559134,
769
+ "re_loss": 0.025938751091333954,
770
+ "conf_loss": 0.0,
771
+ "time": 15
772
+ },
773
+ {
774
+ "iteration": 4686,
775
+ "learning_rate": 0.05623258822404481,
776
+ "alpha": 3.753908219868886,
777
+ "loss": 0.28668873034643405,
778
+ "class_loss": 0.09219798400546565,
779
+ "p_class_loss": 0.09604735085458467,
780
+ "re_loss": 0.026226070145088615,
781
+ "conf_loss": 0.0,
782
+ "time": 34
783
+ },
784
+ {
785
+ "iteration": 4752,
786
+ "learning_rate": 0.05559351878792893,
787
+ "alpha": 3.807160867372668,
788
+ "loss": 0.27499309317632153,
789
+ "class_loss": 0.08802187036384236,
790
+ "p_class_loss": 0.09179980759367798,
791
+ "re_loss": 0.024996825126987515,
792
+ "conf_loss": 0.0,
793
+ "time": 15
794
+ },
795
+ {
796
+ "iteration": 4818,
797
+ "learning_rate": 0.054953632025023895,
798
+ "alpha": 3.8604135148764493,
799
+ "loss": 0.2699499676624934,
800
+ "class_loss": 0.08544509124123689,
801
+ "p_class_loss": 0.08885088117059434,
802
+ "re_loss": 0.024776962698634827,
803
+ "conf_loss": 0.0,
804
+ "time": 15
805
+ },
806
+ {
807
+ "iteration": 4884,
808
+ "learning_rate": 0.05431291628769333,
809
+ "alpha": 3.9136661623802316,
810
+ "loss": 0.2863818799907511,
811
+ "class_loss": 0.09150531594500397,
812
+ "p_class_loss": 0.09508840999368465,
813
+ "re_loss": 0.02549773556264964,
814
+ "conf_loss": 0.0,
815
+ "time": 15
816
+ },
817
+ {
818
+ "iteration": 4950,
819
+ "learning_rate": 0.053671359607244264,
820
+ "alpha": 3.966918809884014,
821
+ "loss": 0.28270259115732077,
822
+ "class_loss": 0.0912272125256784,
823
+ "p_class_loss": 0.09491656133622835,
824
+ "re_loss": 0.024342426973761933,
825
+ "conf_loss": 0.0,
826
+ "time": 15
827
+ },
828
+ {
829
+ "iteration": 5016,
830
+ "learning_rate": 0.0530289496806894,
831
+ "alpha": 3.9996087959779336,
832
+ "loss": 0.2899526475053845,
833
+ "class_loss": 0.09317444010891697,
834
+ "p_class_loss": 0.097012222603415,
835
+ "re_loss": 0.02494419761227839,
836
+ "conf_loss": 0.0,
837
+ "time": 15
838
+ },
839
+ {
840
+ "iteration": 5082,
841
+ "learning_rate": 0.05238567385677741,
842
+ "alpha": 4.0,
843
+ "loss": 0.2809840032097065,
844
+ "class_loss": 0.08963506917158763,
845
+ "p_class_loss": 0.09351434298988545,
846
+ "re_loss": 0.024458647366951813,
847
+ "conf_loss": 0.0,
848
+ "time": 15
849
+ },
850
+ {
851
+ "iteration": 5148,
852
+ "learning_rate": 0.051741519121240934,
853
+ "alpha": 4.0,
854
+ "loss": 0.28262406023162784,
855
+ "class_loss": 0.0910856934885184,
856
+ "p_class_loss": 0.09472302821549503,
857
+ "re_loss": 0.02420383451901602,
858
+ "conf_loss": 0.0,
859
+ "time": 15
860
+ },
861
+ {
862
+ "iteration": 5214,
863
+ "learning_rate": 0.05109647208120638,
864
+ "alpha": 4.0,
865
+ "loss": 0.2820073569362814,
866
+ "class_loss": 0.09092362953180616,
867
+ "p_class_loss": 0.09484663289604765,
868
+ "re_loss": 0.02405927400810249,
869
+ "conf_loss": 0.0,
870
+ "time": 15
871
+ },
872
+ {
873
+ "iteration": 5280,
874
+ "learning_rate": 0.05045051894870592,
875
+ "alpha": 4.0,
876
+ "loss": 0.28320911368637375,
877
+ "class_loss": 0.09215585339927312,
878
+ "p_class_loss": 0.09586411895173969,
879
+ "re_loss": 0.02379728543261687,
880
+ "conf_loss": 0.0,
881
+ "time": 15
882
+ },
883
+ {
884
+ "iteration": 5346,
885
+ "learning_rate": 0.04980364552322607,
886
+ "alpha": 4.0,
887
+ "loss": 0.27445078550866153,
888
+ "class_loss": 0.08776470973636165,
889
+ "p_class_loss": 0.09164902127601883,
890
+ "re_loss": 0.023759262904411917,
891
+ "conf_loss": 0.0,
892
+ "time": 34
893
+ },
894
+ {
895
+ "iteration": 5412,
896
+ "learning_rate": 0.04915583717322224,
897
+ "alpha": 4.0,
898
+ "loss": 0.28672305968674744,
899
+ "class_loss": 0.09333863233526547,
900
+ "p_class_loss": 0.09710404818708246,
901
+ "re_loss": 0.024070094875765568,
902
+ "conf_loss": 0.0,
903
+ "time": 15
904
+ },
905
+ {
906
+ "iteration": 5478,
907
+ "learning_rate": 0.04850707881652148,
908
+ "alpha": 4.0,
909
+ "loss": 0.28257156389229227,
910
+ "class_loss": 0.09313247048042038,
911
+ "p_class_loss": 0.09681258948914932,
912
+ "re_loss": 0.023156625190467545,
913
+ "conf_loss": 0.0,
914
+ "time": 15
915
+ },
916
+ {
917
+ "iteration": 5544,
918
+ "learning_rate": 0.04785735489952932,
919
+ "alpha": 4.0,
920
+ "loss": 0.27076589022621966,
921
+ "class_loss": 0.08652564093019023,
922
+ "p_class_loss": 0.09054027176038786,
923
+ "re_loss": 0.023424994496797972,
924
+ "conf_loss": 0.0,
925
+ "time": 15
926
+ },
927
+ {
928
+ "iteration": 5610,
929
+ "learning_rate": 0.04720664937514843,
930
+ "alpha": 4.0,
931
+ "loss": 0.27235389929829223,
932
+ "class_loss": 0.08707706771339431,
933
+ "p_class_loss": 0.09107179228555072,
934
+ "re_loss": 0.02355125964139447,
935
+ "conf_loss": 0.0,
936
+ "time": 15
937
+ },
938
+ {
939
+ "iteration": 5676,
940
+ "learning_rate": 0.04655494567930828,
941
+ "alpha": 4.0,
942
+ "loss": 0.27449259410301846,
943
+ "class_loss": 0.08705129338936372,
944
+ "p_class_loss": 0.09104211284129908,
945
+ "re_loss": 0.02409979644598383,
946
+ "conf_loss": 0.0,
947
+ "time": 15
948
+ },
949
+ {
950
+ "iteration": 5742,
951
+ "learning_rate": 0.045902226705995475,
952
+ "alpha": 4.0,
953
+ "loss": 0.27139446477998386,
954
+ "class_loss": 0.08774811396318855,
955
+ "p_class_loss": 0.09134821644560857,
956
+ "re_loss": 0.023074533818571857,
957
+ "conf_loss": 0.0,
958
+ "time": 15
959
+ },
960
+ {
961
+ "iteration": 5808,
962
+ "learning_rate": 0.04524847478066371,
963
+ "alpha": 4.0,
964
+ "loss": 0.279672516114784,
965
+ "class_loss": 0.09107140502469106,
966
+ "p_class_loss": 0.09490651817935886,
967
+ "re_loss": 0.023423648016019302,
968
+ "conf_loss": 0.0,
969
+ "time": 15
970
+ },
971
+ {
972
+ "iteration": 5874,
973
+ "learning_rate": 0.044593671631890416,
974
+ "alpha": 4.0,
975
+ "loss": 0.27692870931191876,
976
+ "class_loss": 0.0913755978372964,
977
+ "p_class_loss": 0.09487520367132896,
978
+ "re_loss": 0.02266947672504819,
979
+ "conf_loss": 0.0,
980
+ "time": 15
981
+ },
982
+ {
983
+ "iteration": 5940,
984
+ "learning_rate": 0.04393779836113402,
985
+ "alpha": 4.0,
986
+ "loss": 0.2749598342360872,
987
+ "class_loss": 0.08886864696714011,
988
+ "p_class_loss": 0.09274347860253218,
989
+ "re_loss": 0.023336927039605198,
990
+ "conf_loss": 0.0,
991
+ "time": 15
992
+ },
993
+ {
994
+ "iteration": 6006,
995
+ "learning_rate": 0.043280835410430665,
996
+ "alpha": 4.0,
997
+ "loss": 0.27103203015797067,
998
+ "class_loss": 0.0879701247833895,
999
+ "p_class_loss": 0.09168451702730222,
1000
+ "re_loss": 0.022844346437716122,
1001
+ "conf_loss": 0.0,
1002
+ "time": 34
1003
+ },
1004
+ {
1005
+ "iteration": 6072,
1006
+ "learning_rate": 0.04262276252785307,
1007
+ "alpha": 4.0,
1008
+ "loss": 0.26942289394862723,
1009
+ "class_loss": 0.08836323813055501,
1010
+ "p_class_loss": 0.09191939579040716,
1011
+ "re_loss": 0.022285064823473946,
1012
+ "conf_loss": 0.0,
1013
+ "time": 15
1014
+ },
1015
+ {
1016
+ "iteration": 6138,
1017
+ "learning_rate": 0.041963558730535026,
1018
+ "alpha": 4.0,
1019
+ "loss": 0.27769372815435583,
1020
+ "class_loss": 0.08951219747012312,
1021
+ "p_class_loss": 0.09330245107412338,
1022
+ "re_loss": 0.02371977007185871,
1023
+ "conf_loss": 0.0,
1024
+ "time": 15
1025
+ },
1026
+ {
1027
+ "iteration": 6204,
1028
+ "learning_rate": 0.041303202265044775,
1029
+ "alpha": 4.0,
1030
+ "loss": 0.26997587287967856,
1031
+ "class_loss": 0.08803907843927543,
1032
+ "p_class_loss": 0.09191509127391106,
1033
+ "re_loss": 0.02250542531185078,
1034
+ "conf_loss": 0.0,
1035
+ "time": 15
1036
+ },
1037
+ {
1038
+ "iteration": 6270,
1039
+ "learning_rate": 0.04064167056486619,
1040
+ "alpha": 4.0,
1041
+ "loss": 0.27488198244210443,
1042
+ "class_loss": 0.08943272636018017,
1043
+ "p_class_loss": 0.09293239930588187,
1044
+ "re_loss": 0.023129213671905523,
1045
+ "conf_loss": 0.0,
1046
+ "time": 15
1047
+ },
1048
+ {
1049
+ "iteration": 6336,
1050
+ "learning_rate": 0.039978940204720675,
1051
+ "alpha": 4.0,
1052
+ "loss": 0.2712762283556389,
1053
+ "class_loss": 0.08745149466575998,
1054
+ "p_class_loss": 0.09135077718758222,
1055
+ "re_loss": 0.023118488829244267,
1056
+ "conf_loss": 0.0,
1057
+ "time": 15
1058
+ },
1059
+ {
1060
+ "iteration": 6402,
1061
+ "learning_rate": 0.039314986851432414,
1062
+ "alpha": 4.0,
1063
+ "loss": 0.27013291666905087,
1064
+ "class_loss": 0.08711065780935866,
1065
+ "p_class_loss": 0.09058049456639723,
1066
+ "re_loss": 0.023110440974547106,
1067
+ "conf_loss": 0.0,
1068
+ "time": 15
1069
+ },
1070
+ {
1071
+ "iteration": 6468,
1072
+ "learning_rate": 0.03864978521100512,
1073
+ "alpha": 4.0,
1074
+ "loss": 0.26656877746184665,
1075
+ "class_loss": 0.08653509103213296,
1076
+ "p_class_loss": 0.0900559469380162,
1077
+ "re_loss": 0.022494434745925846,
1078
+ "conf_loss": 0.0,
1079
+ "time": 15
1080
+ },
1081
+ {
1082
+ "iteration": 6534,
1083
+ "learning_rate": 0.03798330897154045,
1084
+ "alpha": 4.0,
1085
+ "loss": 0.2677343559987617,
1086
+ "class_loss": 0.08488816717131571,
1087
+ "p_class_loss": 0.08870497165304242,
1088
+ "re_loss": 0.02353530413838047,
1089
+ "conf_loss": 0.0,
1090
+ "time": 15
1091
+ },
1092
+ {
1093
+ "iteration": 6600,
1094
+ "learning_rate": 0.037315530741583156,
1095
+ "alpha": 4.0,
1096
+ "loss": 0.27300241341193515,
1097
+ "class_loss": 0.09070577212806905,
1098
+ "p_class_loss": 0.09435731765221465,
1099
+ "re_loss": 0.021984830865580025,
1100
+ "conf_loss": 0.0,
1101
+ "time": 15
1102
+ },
1103
+ {
1104
+ "iteration": 6666,
1105
+ "learning_rate": 0.036646421983428504,
1106
+ "alpha": 4.0,
1107
+ "loss": 0.27142718389178766,
1108
+ "class_loss": 0.08775234611874277,
1109
+ "p_class_loss": 0.09169461764395237,
1110
+ "re_loss": 0.02299505460894469,
1111
+ "conf_loss": 0.0,
1112
+ "time": 34
1113
+ },
1114
+ {
1115
+ "iteration": 6732,
1116
+ "learning_rate": 0.035975952940869374,
1117
+ "alpha": 4.0,
1118
+ "loss": 0.25844592623638385,
1119
+ "class_loss": 0.08317464663449561,
1120
+ "p_class_loss": 0.08665445932384694,
1121
+ "re_loss": 0.022154204956622736,
1122
+ "conf_loss": 0.0,
1123
+ "time": 15
1124
+ },
1125
+ {
1126
+ "iteration": 6798,
1127
+ "learning_rate": 0.035304092560794184,
1128
+ "alpha": 4.0,
1129
+ "loss": 0.26580964638428256,
1130
+ "class_loss": 0.08627154616018136,
1131
+ "p_class_loss": 0.090236339830991,
1132
+ "re_loss": 0.022325440324052717,
1133
+ "conf_loss": 0.0,
1134
+ "time": 15
1135
+ },
1136
+ {
1137
+ "iteration": 6864,
1138
+ "learning_rate": 0.034630808407971204,
1139
+ "alpha": 4.0,
1140
+ "loss": 0.2640183796033715,
1141
+ "class_loss": 0.08414980295029553,
1142
+ "p_class_loss": 0.08810644557304455,
1143
+ "re_loss": 0.02294053268534216,
1144
+ "conf_loss": 0.0,
1145
+ "time": 15
1146
+ },
1147
+ {
1148
+ "iteration": 6930,
1149
+ "learning_rate": 0.03395606657226626,
1150
+ "alpha": 4.0,
1151
+ "loss": 0.26370580449248804,
1152
+ "class_loss": 0.08541266129098156,
1153
+ "p_class_loss": 0.08895942613934026,
1154
+ "re_loss": 0.022333428701103636,
1155
+ "conf_loss": 0.0,
1156
+ "time": 15
1157
+ },
1158
+ {
1159
+ "iteration": 6996,
1160
+ "learning_rate": 0.03327983156743993,
1161
+ "alpha": 4.0,
1162
+ "loss": 0.2720783483801466,
1163
+ "class_loss": 0.08773583614013412,
1164
+ "p_class_loss": 0.09173141769839055,
1165
+ "re_loss": 0.02315277329674273,
1166
+ "conf_loss": 0.0,
1167
+ "time": 15
1168
+ },
1169
+ {
1170
+ "iteration": 7062,
1171
+ "learning_rate": 0.03260206622055165,
1172
+ "alpha": 4.0,
1173
+ "loss": 0.25677314220052777,
1174
+ "class_loss": 0.08221176548889189,
1175
+ "p_class_loss": 0.08621381663463333,
1176
+ "re_loss": 0.022086890287358652,
1177
+ "conf_loss": 0.0,
1178
+ "time": 15
1179
+ },
1180
+ {
1181
+ "iteration": 7128,
1182
+ "learning_rate": 0.03192273155086139,
1183
+ "alpha": 4.0,
1184
+ "loss": 0.2660258331082084,
1185
+ "class_loss": 0.08682938394221393,
1186
+ "p_class_loss": 0.09030625980460283,
1187
+ "re_loss": 0.022222546888797573,
1188
+ "conf_loss": 0.0,
1189
+ "time": 15
1190
+ },
1191
+ {
1192
+ "iteration": 7194,
1193
+ "learning_rate": 0.03124178663695862,
1194
+ "alpha": 4.0,
1195
+ "loss": 0.2583186025872375,
1196
+ "class_loss": 0.08346859427789848,
1197
+ "p_class_loss": 0.08677470328455622,
1198
+ "re_loss": 0.022018826030420536,
1199
+ "conf_loss": 0.0,
1200
+ "time": 15
1201
+ },
1202
+ {
1203
+ "iteration": 7260,
1204
+ "learning_rate": 0.030559188470660144,
1205
+ "alpha": 4.0,
1206
+ "loss": 0.26884931980660465,
1207
+ "class_loss": 0.08691503384122343,
1208
+ "p_class_loss": 0.09063762618285237,
1209
+ "re_loss": 0.022824164451749035,
1210
+ "conf_loss": 0.0,
1211
+ "time": 15
1212
+ },
1213
+ {
1214
+ "iteration": 7326,
1215
+ "learning_rate": 0.029874891795997234,
1216
+ "alpha": 4.0,
1217
+ "loss": 0.266261718489907,
1218
+ "class_loss": 0.08646944283761761,
1219
+ "p_class_loss": 0.08997903019189835,
1220
+ "re_loss": 0.022453311266321125,
1221
+ "conf_loss": 0.0,
1222
+ "time": 34
1223
+ },
1224
+ {
1225
+ "iteration": 7392,
1226
+ "learning_rate": 0.029188848931350236,
1227
+ "alpha": 4.0,
1228
+ "loss": 0.26708939942446625,
1229
+ "class_loss": 0.08629941968529513,
1230
+ "p_class_loss": 0.09006970150001122,
1231
+ "re_loss": 0.022680069404569538,
1232
+ "conf_loss": 0.0,
1233
+ "time": 15
1234
+ },
1235
+ {
1236
+ "iteration": 7458,
1237
+ "learning_rate": 0.02850100957247924,
1238
+ "alpha": 4.0,
1239
+ "loss": 0.26053636521101,
1240
+ "class_loss": 0.08387578617442738,
1241
+ "p_class_loss": 0.08771627520521481,
1242
+ "re_loss": 0.02223607561917919,
1243
+ "conf_loss": 0.0,
1244
+ "time": 15
1245
+ },
1246
+ {
1247
+ "iteration": 7524,
1248
+ "learning_rate": 0.027811320573829224,
1249
+ "alpha": 4.0,
1250
+ "loss": 0.2510256977243857,
1251
+ "class_loss": 0.08105461869501707,
1252
+ "p_class_loss": 0.08464242771945217,
1253
+ "re_loss": 0.02133216286981196,
1254
+ "conf_loss": 0.0,
1255
+ "time": 15
1256
+ },
1257
+ {
1258
+ "iteration": 7590,
1259
+ "learning_rate": 0.02711972570504625,
1260
+ "alpha": 4.0,
1261
+ "loss": 0.2630213571317268,
1262
+ "class_loss": 0.0848130105119763,
1263
+ "p_class_loss": 0.08842846976988243,
1264
+ "re_loss": 0.022444968789138577,
1265
+ "conf_loss": 0.0,
1266
+ "time": 15
1267
+ },
1268
+ {
1269
+ "iteration": 7656,
1270
+ "learning_rate": 0.026426165379109703,
1271
+ "alpha": 4.0,
1272
+ "loss": 0.25552796414404205,
1273
+ "class_loss": 0.08139325751725471,
1274
+ "p_class_loss": 0.08499028003125479,
1275
+ "re_loss": 0.022286106578328392,
1276
+ "conf_loss": 0.0,
1277
+ "time": 15
1278
+ },
1279
+ {
1280
+ "iteration": 7722,
1281
+ "learning_rate": 0.025730576347843644,
1282
+ "alpha": 4.0,
1283
+ "loss": 0.25198384825930453,
1284
+ "class_loss": 0.08032257629163338,
1285
+ "p_class_loss": 0.08415062832787182,
1286
+ "re_loss": 0.021877660712396555,
1287
+ "conf_loss": 0.0,
1288
+ "time": 15
1289
+ },
1290
+ {
1291
+ "iteration": 7788,
1292
+ "learning_rate": 0.025032891359791087,
1293
+ "alpha": 4.0,
1294
+ "loss": 0.25168039988387714,
1295
+ "class_loss": 0.08004032758375008,
1296
+ "p_class_loss": 0.08366928712436647,
1297
+ "re_loss": 0.02199269657615911,
1298
+ "conf_loss": 0.0,
1299
+ "time": 15
1300
+ },
1301
+ {
1302
+ "iteration": 7854,
1303
+ "learning_rate": 0.024333038774483465,
1304
+ "alpha": 4.0,
1305
+ "loss": 0.26368618688800116,
1306
+ "class_loss": 0.084438663935571,
1307
+ "p_class_loss": 0.08827974280398904,
1308
+ "re_loss": 0.022741944726669426,
1309
+ "conf_loss": 0.0,
1310
+ "time": 15
1311
+ },
1312
+ {
1313
+ "iteration": 7920,
1314
+ "learning_rate": 0.02363094212596905,
1315
+ "alpha": 4.0,
1316
+ "loss": 0.26637161229595996,
1317
+ "class_loss": 0.0849287613210353,
1318
+ "p_class_loss": 0.08843515327934062,
1319
+ "re_loss": 0.02325192428278652,
1320
+ "conf_loss": 0.0,
1321
+ "time": 15
1322
+ },
1323
+ {
1324
+ "iteration": 7986,
1325
+ "learning_rate": 0.022926519627021413,
1326
+ "alpha": 4.0,
1327
+ "loss": 0.2546160878105597,
1328
+ "class_loss": 0.0811132758742932,
1329
+ "p_class_loss": 0.08461448922753334,
1330
+ "re_loss": 0.022222079661195025,
1331
+ "conf_loss": 0.0,
1332
+ "time": 34
1333
+ },
1334
+ {
1335
+ "iteration": 8052,
1336
+ "learning_rate": 0.022219683603653076,
1337
+ "alpha": 4.0,
1338
+ "loss": 0.2614448217279983,
1339
+ "class_loss": 0.08399147890282399,
1340
+ "p_class_loss": 0.08777457740948055,
1341
+ "re_loss": 0.02241969122692491,
1342
+ "conf_loss": 0.0,
1343
+ "time": 15
1344
+ },
1345
+ {
1346
+ "iteration": 8118,
1347
+ "learning_rate": 0.021510339847313098,
1348
+ "alpha": 4.0,
1349
+ "loss": 0.2554654569336862,
1350
+ "class_loss": 0.08182670373582479,
1351
+ "p_class_loss": 0.08551882354147507,
1352
+ "re_loss": 0.02202998266809366,
1353
+ "conf_loss": 0.0,
1354
+ "time": 15
1355
+ },
1356
+ {
1357
+ "iteration": 8184,
1358
+ "learning_rate": 0.02079838686931096,
1359
+ "alpha": 4.0,
1360
+ "loss": 0.24650358815084805,
1361
+ "class_loss": 0.0785150443288413,
1362
+ "p_class_loss": 0.08229628470585201,
1363
+ "re_loss": 0.021423064764927734,
1364
+ "conf_loss": 0.0,
1365
+ "time": 15
1366
+ },
1367
+ {
1368
+ "iteration": 8250,
1369
+ "learning_rate": 0.020083715038404844,
1370
+ "alpha": 4.0,
1371
+ "loss": 0.26195508602893713,
1372
+ "class_loss": 0.08452466502785683,
1373
+ "p_class_loss": 0.0882384530409719,
1374
+ "re_loss": 0.02229799186302857,
1375
+ "conf_loss": 0.0,
1376
+ "time": 15
1377
+ },
1378
+ {
1379
+ "iteration": 8316,
1380
+ "learning_rate": 0.019366205577868813,
1381
+ "alpha": 4.0,
1382
+ "loss": 0.2562436761729645,
1383
+ "class_loss": 0.08322792308348598,
1384
+ "p_class_loss": 0.08679867152011755,
1385
+ "re_loss": 0.021554270970889113,
1386
+ "conf_loss": 0.0,
1387
+ "time": 15
1388
+ },
1389
+ {
1390
+ "iteration": 8382,
1391
+ "learning_rate": 0.018645729392371076,
1392
+ "alpha": 4.0,
1393
+ "loss": 0.2568132674152201,
1394
+ "class_loss": 0.08262469094585288,
1395
+ "p_class_loss": 0.08608808012848551,
1396
+ "re_loss": 0.02202512360544819,
1397
+ "conf_loss": 0.0,
1398
+ "time": 15
1399
+ },
1400
+ {
1401
+ "iteration": 8448,
1402
+ "learning_rate": 0.01792214568717831,
1403
+ "alpha": 4.0,
1404
+ "loss": 0.2609473155303435,
1405
+ "class_loss": 0.08313413240918607,
1406
+ "p_class_loss": 0.08711776142996369,
1407
+ "re_loss": 0.022673854928915247,
1408
+ "conf_loss": 0.0,
1409
+ "time": 15
1410
+ },
1411
+ {
1412
+ "iteration": 8514,
1413
+ "learning_rate": 0.017195300331875923,
1414
+ "alpha": 4.0,
1415
+ "loss": 0.25722048634832556,
1416
+ "class_loss": 0.08223536159052994,
1417
+ "p_class_loss": 0.0861912699359836,
1418
+ "re_loss": 0.022198463917117228,
1419
+ "conf_loss": 0.0,
1420
+ "time": 15
1421
+ },
1422
+ {
1423
+ "iteration": 8580,
1424
+ "learning_rate": 0.016465023907002885,
1425
+ "alpha": 4.0,
1426
+ "loss": 0.252747813409025,
1427
+ "class_loss": 0.08024968364925096,
1428
+ "p_class_loss": 0.08433184806596149,
1429
+ "re_loss": 0.022041570169456078,
1430
+ "conf_loss": 0.0,
1431
+ "time": 15
1432
+ },
1433
+ {
1434
+ "iteration": 8646,
1435
+ "learning_rate": 0.015731129353344985,
1436
+ "alpha": 4.0,
1437
+ "loss": 0.2528942780512752,
1438
+ "class_loss": 0.08167180994694884,
1439
+ "p_class_loss": 0.08539805770146125,
1440
+ "re_loss": 0.021456103009933777,
1441
+ "conf_loss": 0.0,
1442
+ "time": 34
1443
+ },
1444
+ {
1445
+ "iteration": 8712,
1446
+ "learning_rate": 0.014993409118054087,
1447
+ "alpha": 4.0,
1448
+ "loss": 0.25171273450056714,
1449
+ "class_loss": 0.08011508236328761,
1450
+ "p_class_loss": 0.08391360323311704,
1451
+ "re_loss": 0.021921012113153032,
1452
+ "conf_loss": 0.0,
1453
+ "time": 15
1454
+ },
1455
+ {
1456
+ "iteration": 8778,
1457
+ "learning_rate": 0.014251631656171146,
1458
+ "alpha": 4.0,
1459
+ "loss": 0.24869335375048898,
1460
+ "class_loss": 0.07969781073431174,
1461
+ "p_class_loss": 0.08358355493030765,
1462
+ "re_loss": 0.021352996668693693,
1463
+ "conf_loss": 0.0,
1464
+ "time": 15
1465
+ },
1466
+ {
1467
+ "iteration": 8844,
1468
+ "learning_rate": 0.01350553709578782,
1469
+ "alpha": 4.0,
1470
+ "loss": 0.2572281157428568,
1471
+ "class_loss": 0.08294896154918453,
1472
+ "p_class_loss": 0.0869410118709008,
1473
+ "re_loss": 0.021834536385016912,
1474
+ "conf_loss": 0.0,
1475
+ "time": 15
1476
+ },
1477
+ {
1478
+ "iteration": 8910,
1479
+ "learning_rate": 0.012754831802576104,
1480
+ "alpha": 4.0,
1481
+ "loss": 0.24979764494028958,
1482
+ "class_loss": 0.07943106911173373,
1483
+ "p_class_loss": 0.08287825463621905,
1484
+ "re_loss": 0.021872080072309032,
1485
+ "conf_loss": 0.0,
1486
+ "time": 15
1487
+ },
1488
+ {
1489
+ "iteration": 8976,
1490
+ "learning_rate": 0.011999181472868131,
1491
+ "alpha": 4.0,
1492
+ "loss": 0.24369859740589606,
1493
+ "class_loss": 0.07692616805434227,
1494
+ "p_class_loss": 0.08070433038202199,
1495
+ "re_loss": 0.021517024883492428,
1496
+ "conf_loss": 0.0,
1497
+ "time": 15
1498
+ },
1499
+ {
1500
+ "iteration": 9042,
1501
+ "learning_rate": 0.011238202224342653,
1502
+ "alpha": 4.0,
1503
+ "loss": 0.24896227545810468,
1504
+ "class_loss": 0.07891058351731661,
1505
+ "p_class_loss": 0.08250137322554082,
1506
+ "re_loss": 0.02188757983403224,
1507
+ "conf_loss": 0.0,
1508
+ "time": 15
1509
+ },
1510
+ {
1511
+ "iteration": 9108,
1512
+ "learning_rate": 0.01047144890655713,
1513
+ "alpha": 4.0,
1514
+ "loss": 0.2651791220361536,
1515
+ "class_loss": 0.08543208162441399,
1516
+ "p_class_loss": 0.08925815491062222,
1517
+ "re_loss": 0.022622221163615133,
1518
+ "conf_loss": 0.0,
1519
+ "time": 15
1520
+ },
1521
+ {
1522
+ "iteration": 9174,
1523
+ "learning_rate": 0.00969839946202967,
1524
+ "alpha": 4.0,
1525
+ "loss": 0.2582064426758073,
1526
+ "class_loss": 0.08363607108141437,
1527
+ "p_class_loss": 0.0871530185368928,
1528
+ "re_loss": 0.021854338236153126,
1529
+ "conf_loss": 0.0,
1530
+ "time": 15
1531
+ },
1532
+ {
1533
+ "iteration": 9240,
1534
+ "learning_rate": 0.00891843352667202,
1535
+ "alpha": 4.0,
1536
+ "loss": 0.24548901617527008,
1537
+ "class_loss": 0.07783742011948065,
1538
+ "p_class_loss": 0.0813087872370626,
1539
+ "re_loss": 0.02158570203535033,
1540
+ "conf_loss": 0.0,
1541
+ "time": 15
1542
+ },
1543
+ {
1544
+ "iteration": 9306,
1545
+ "learning_rate": 0.008130802365067418,
1546
+ "alpha": 4.0,
1547
+ "loss": 0.241554471579465,
1548
+ "class_loss": 0.07608497018615405,
1549
+ "p_class_loss": 0.079719364078659,
1550
+ "re_loss": 0.021437533933556442,
1551
+ "conf_loss": 0.0,
1552
+ "time": 34
1553
+ },
1554
+ {
1555
+ "iteration": 9372,
1556
+ "learning_rate": 0.0073345852886601455,
1557
+ "alpha": 4.0,
1558
+ "loss": 0.24608669294552368,
1559
+ "class_loss": 0.07805259187113155,
1560
+ "p_class_loss": 0.08190038111625296,
1561
+ "re_loss": 0.021533429552095407,
1562
+ "conf_loss": 0.0,
1563
+ "time": 15
1564
+ },
1565
+ {
1566
+ "iteration": 9438,
1567
+ "learning_rate": 0.00652862404598149,
1568
+ "alpha": 4.0,
1569
+ "loss": 0.250537108065504,
1570
+ "class_loss": 0.07887401951081825,
1571
+ "p_class_loss": 0.08247577946520213,
1572
+ "re_loss": 0.022296827314703754,
1573
+ "conf_loss": 0.0,
1574
+ "time": 15
1575
+ },
1576
+ {
1577
+ "iteration": 9504,
1578
+ "learning_rate": 0.005711419339067195,
1579
+ "alpha": 4.0,
1580
+ "loss": 0.2517375090357029,
1581
+ "class_loss": 0.07957503047179092,
1582
+ "p_class_loss": 0.08372594083123135,
1583
+ "re_loss": 0.022109133572402326,
1584
+ "conf_loss": 0.0,
1585
+ "time": 15
1586
+ },
1587
+ {
1588
+ "iteration": 9570,
1589
+ "learning_rate": 0.004880957680822683,
1590
+ "alpha": 4.0,
1591
+ "loss": 0.25499846199245163,
1592
+ "class_loss": 0.08113476255852164,
1593
+ "p_class_loss": 0.0849764087434971,
1594
+ "re_loss": 0.02222182255972064,
1595
+ "conf_loss": 0.0,
1596
+ "time": 15
1597
+ },
1598
+ {
1599
+ "iteration": 9636,
1600
+ "learning_rate": 0.004034398387053385,
1601
+ "alpha": 4.0,
1602
+ "loss": 0.25415949658914044,
1603
+ "class_loss": 0.08022765595127236,
1604
+ "p_class_loss": 0.08434248619684667,
1605
+ "re_loss": 0.022397338638477253,
1606
+ "conf_loss": 0.0,
1607
+ "time": 15
1608
+ },
1609
+ {
1610
+ "iteration": 9702,
1611
+ "learning_rate": 0.003167444028983347,
1612
+ "alpha": 4.0,
1613
+ "loss": 0.24872907951022638,
1614
+ "class_loss": 0.07845463699689417,
1615
+ "p_class_loss": 0.08232282593168995,
1616
+ "re_loss": 0.02198790418774341,
1617
+ "conf_loss": 0.0,
1618
+ "time": 15
1619
+ },
1620
+ {
1621
+ "iteration": 9768,
1622
+ "learning_rate": 0.0022728569206237922,
1623
+ "alpha": 4.0,
1624
+ "loss": 0.24348128428964905,
1625
+ "class_loss": 0.07746653913548499,
1626
+ "p_class_loss": 0.08072477364630411,
1627
+ "re_loss": 0.021322492312527065,
1628
+ "conf_loss": 0.0,
1629
+ "time": 15
1630
+ },
1631
+ {
1632
+ "iteration": 9834,
1633
+ "learning_rate": 0.0013358848371585364,
1634
+ "alpha": 4.0,
1635
+ "loss": 0.2415681393309073,
1636
+ "class_loss": 0.07638258650673158,
1637
+ "p_class_loss": 0.07974133284931834,
1638
+ "re_loss": 0.02136105476793918,
1639
+ "conf_loss": 0.0,
1640
+ "time": 15
1641
+ },
1642
+ {
1643
+ "iteration": 9900,
1644
+ "learning_rate": 0.0003069336738416699,
1645
+ "alpha": 4.0,
1646
+ "loss": 0.25945339193849853,
1647
+ "class_loss": 0.0842481419782747,
1648
+ "p_class_loss": 0.08819409437251813,
1649
+ "re_loss": 0.021752788445376085,
1650
+ "conf_loss": 0.0,
1651
+ "time": 15
1652
+ }
1653
+ ],
1654
+ "validation": [
1655
+ {
1656
+ "iteration": 661,
1657
+ "threshold": 0.1,
1658
+ "train_mIoU": 40.431105085264676,
1659
+ "best_train_mIoU": 40.431105085264676,
1660
+ "time": 18
1661
+ },
1662
+ {
1663
+ "iteration": 1322,
1664
+ "threshold": 0.1,
1665
+ "train_mIoU": 43.46100840234902,
1666
+ "best_train_mIoU": 43.46100840234902,
1667
+ "time": 18
1668
+ },
1669
+ {
1670
+ "iteration": 1983,
1671
+ "threshold": 0.1,
1672
+ "train_mIoU": 43.177254158210296,
1673
+ "best_train_mIoU": 43.46100840234902,
1674
+ "time": 17
1675
+ },
1676
+ {
1677
+ "iteration": 2644,
1678
+ "threshold": 0.1,
1679
+ "train_mIoU": 44.51425697996,
1680
+ "best_train_mIoU": 44.51425697996,
1681
+ "time": 18
1682
+ },
1683
+ {
1684
+ "iteration": 3305,
1685
+ "threshold": 0.1,
1686
+ "train_mIoU": 45.100629296056006,
1687
+ "best_train_mIoU": 45.100629296056006,
1688
+ "time": 18
1689
+ },
1690
+ {
1691
+ "iteration": 3966,
1692
+ "threshold": 0.1,
1693
+ "train_mIoU": 46.224907220002024,
1694
+ "best_train_mIoU": 46.224907220002024,
1695
+ "time": 18
1696
+ },
1697
+ {
1698
+ "iteration": 4627,
1699
+ "threshold": 0.1,
1700
+ "train_mIoU": 45.987615324246725,
1701
+ "best_train_mIoU": 46.224907220002024,
1702
+ "time": 17
1703
+ },
1704
+ {
1705
+ "iteration": 5288,
1706
+ "threshold": 0.1,
1707
+ "train_mIoU": 45.93900520100114,
1708
+ "best_train_mIoU": 46.224907220002024,
1709
+ "time": 18
1710
+ },
1711
+ {
1712
+ "iteration": 5949,
1713
+ "threshold": 0.1,
1714
+ "train_mIoU": 46.19157269786109,
1715
+ "best_train_mIoU": 46.224907220002024,
1716
+ "time": 17
1717
+ },
1718
+ {
1719
+ "iteration": 6610,
1720
+ "threshold": 0.1,
1721
+ "train_mIoU": 45.6996113024023,
1722
+ "best_train_mIoU": 46.224907220002024,
1723
+ "time": 18
1724
+ },
1725
+ {
1726
+ "iteration": 7271,
1727
+ "threshold": 0.1,
1728
+ "train_mIoU": 45.848207089703266,
1729
+ "best_train_mIoU": 46.224907220002024,
1730
+ "time": 18
1731
+ },
1732
+ {
1733
+ "iteration": 7932,
1734
+ "threshold": 0.1,
1735
+ "train_mIoU": 46.26744171781166,
1736
+ "best_train_mIoU": 46.26744171781166,
1737
+ "time": 18
1738
+ },
1739
+ {
1740
+ "iteration": 8593,
1741
+ "threshold": 0.1,
1742
+ "train_mIoU": 46.422600225610935,
1743
+ "best_train_mIoU": 46.422600225610935,
1744
+ "time": 18
1745
+ },
1746
+ {
1747
+ "iteration": 9254,
1748
+ "threshold": 0.1,
1749
+ "train_mIoU": 45.940160699367595,
1750
+ "best_train_mIoU": 46.422600225610935,
1751
+ "time": 17
1752
+ },
1753
+ {
1754
+ "iteration": 9915,
1755
+ "threshold": 0.1,
1756
+ "train_mIoU": 46.11233098931772,
1757
+ "best_train_mIoU": 46.422600225610935,
1758
+ "time": 18
1759
+ }
1760
+ ]
1761
+ }
experiments/logs/AffinityNet@ResNet-50@Puzzle.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [i] AffinityNet@ResNet-50@Puzzle
2
+
3
+ [i] mean values is [0.485, 0.456, 0.406]
4
+ [i] std values is [0.229, 0.224, 0.225]
5
+ [i] The number of class is 20
6
+ [i] train_transform is Compose(
7
+ <tools.ai.augment_utils.RandomResize_For_Segmentation object at 0x79be15df3430>
8
+ <tools.ai.augment_utils.RandomHorizontalFlip_For_Segmentation object at 0x79be15df3400>
9
+ <tools.ai.augment_utils.Normalize_For_Segmentation object at 0x79be15df3490>
10
+ <tools.ai.augment_utils.RandomCrop_For_Segmentation object at 0x79be15df3550>
11
+ <tools.ai.augment_utils.Transpose_For_Segmentation object at 0x79be15df35b0>
12
+ <tools.ai.augment_utils.Resize_For_Mask object at 0x79be15df35e0>
13
+ )
14
+
15
+ [i] log_iteration : 33
16
+ [i] val_iteration : 330
17
+ [i] max_iteration : 990
18
+ [i] Architecture is resnet50
19
+ [i] Total Params: 23.63M
20
+
21
+ [i] iteration=33, learning_rate=0.0971, loss=0.5866, bg_loss=0.5234, fg_loss=0.7140, neg_loss=0.5546, time=21sec
22
+ [i] iteration=66, learning_rate=0.0941, loss=0.4096, bg_loss=0.3311, fg_loss=0.5322, neg_loss=0.3876, time=18sec
23
+ [i] iteration=99, learning_rate=0.0910, loss=0.3690, bg_loss=0.2907, fg_loss=0.4917, neg_loss=0.3468, time=18sec
24
+ [i] iteration=132, learning_rate=0.0880, loss=0.3705, bg_loss=0.2945, fg_loss=0.4954, neg_loss=0.3460, time=18sec
25
+ [i] iteration=165, learning_rate=0.0850, loss=0.3655, bg_loss=0.2897, fg_loss=0.4852, neg_loss=0.3436, time=19sec
26
+ [i] iteration=198, learning_rate=0.0819, loss=0.3529, bg_loss=0.2799, fg_loss=0.4650, neg_loss=0.3334, time=19sec
27
+ [i] iteration=231, learning_rate=0.0788, loss=0.3469, bg_loss=0.2809, fg_loss=0.4627, neg_loss=0.3220, time=19sec
28
+ [i] iteration=264, learning_rate=0.0757, loss=0.3695, bg_loss=0.2976, fg_loss=0.4803, neg_loss=0.3500, time=19sec
29
+ [i] iteration=297, learning_rate=0.0726, loss=0.3496, bg_loss=0.2698, fg_loss=0.4781, neg_loss=0.3252, time=19sec
30
+ [i] iteration=330, learning_rate=0.0695, loss=0.3384, bg_loss=0.2712, fg_loss=0.4460, neg_loss=0.3183, time=19sec
31
+ [i] iteration=363, learning_rate=0.0664, loss=0.3259, bg_loss=0.2599, fg_loss=0.4418, neg_loss=0.3010, time=21sec
32
+ [i] iteration=396, learning_rate=0.0632, loss=0.3375, bg_loss=0.2621, fg_loss=0.4632, neg_loss=0.3123, time=18sec
33
+ [i] iteration=429, learning_rate=0.0601, loss=0.3277, bg_loss=0.2583, fg_loss=0.4373, neg_loss=0.3076, time=18sec
34
+ [i] iteration=462, learning_rate=0.0569, loss=0.3313, bg_loss=0.2533, fg_loss=0.4549, neg_loss=0.3084, time=18sec
35
+ [i] iteration=495, learning_rate=0.0537, loss=0.3301, bg_loss=0.2494, fg_loss=0.4540, neg_loss=0.3085, time=19sec
36
+ [i] iteration=528, learning_rate=0.0505, loss=0.3229, bg_loss=0.2521, fg_loss=0.4341, neg_loss=0.3028, time=19sec
37
+ [i] iteration=561, learning_rate=0.0472, loss=0.3174, bg_loss=0.2464, fg_loss=0.4381, neg_loss=0.2925, time=19sec
38
+ [i] iteration=594, learning_rate=0.0439, loss=0.3270, bg_loss=0.2472, fg_loss=0.4452, neg_loss=0.3079, time=19sec
39
+ [i] iteration=627, learning_rate=0.0406, loss=0.3237, bg_loss=0.2511, fg_loss=0.4465, neg_loss=0.2987, time=19sec
40
+ [i] iteration=660, learning_rate=0.0373, loss=0.3258, bg_loss=0.2443, fg_loss=0.4472, neg_loss=0.3058, time=19sec
41
+ [i] iteration=693, learning_rate=0.0339, loss=0.3254, bg_loss=0.2507, fg_loss=0.4396, neg_loss=0.3056, time=21sec
42
+ [i] iteration=726, learning_rate=0.0305, loss=0.3242, bg_loss=0.2441, fg_loss=0.4472, neg_loss=0.3027, time=18sec
43
+ [i] iteration=759, learning_rate=0.0271, loss=0.3185, bg_loss=0.2413, fg_loss=0.4289, neg_loss=0.3019, time=19sec
44
+ [i] iteration=792, learning_rate=0.0236, loss=0.3287, bg_loss=0.2424, fg_loss=0.4540, neg_loss=0.3091, time=19sec
45
+ [i] iteration=825, learning_rate=0.0200, loss=0.3113, bg_loss=0.2352, fg_loss=0.4350, neg_loss=0.2875, time=19sec
46
+ [i] iteration=858, learning_rate=0.0164, loss=0.3110, bg_loss=0.2417, fg_loss=0.4271, neg_loss=0.2876, time=19sec
47
+ [i] iteration=891, learning_rate=0.0127, loss=0.3182, bg_loss=0.2422, fg_loss=0.4330, neg_loss=0.2987, time=19sec
48
+ [i] iteration=924, learning_rate=0.0089, loss=0.3107, bg_loss=0.2489, fg_loss=0.4280, neg_loss=0.2829, time=19sec
49
+ [i] iteration=957, learning_rate=0.0048, loss=0.3141, bg_loss=0.2364, fg_loss=0.4319, neg_loss=0.2940, time=19sec
50
+ [i] iteration=990, learning_rate=0.0002, loss=0.3115, bg_loss=0.2404, fg_loss=0.4173, neg_loss=0.2942, time=19sec
experiments/logs/DeepLabv3+@ResNet-50@Fix@GN.txt ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [i] DeepLabv3+@ResNet-50@Fix@GN
2
+
3
+ [i] mean values is [0.485, 0.456, 0.406]
4
+ [i] std values is [0.229, 0.224, 0.225]
5
+ [i] The number of class is 20
6
+ [i] train_transform is Compose(
7
+ <tools.ai.augment_utils.RandomResize_For_Segmentation object at 0x7a0c41d09750>
8
+ <tools.ai.augment_utils.RandomHorizontalFlip_For_Segmentation object at 0x7a0c41d09720>
9
+ <tools.ai.augment_utils.Normalize_For_Segmentation object at 0x7a0c41d097e0>
10
+ <tools.ai.augment_utils.RandomCrop_For_Segmentation object at 0x7a0c41d09870>
11
+ <tools.ai.augment_utils.Transpose_For_Segmentation object at 0x7a0c41d098d0>
12
+ )
13
+
14
+ [i] log_iteration : 66
15
+ [i] val_iteration : 661
16
+ [i] max_iteration : 9,915
17
+ [i] Architecture is DeepLabv3+
18
+ [i] Total Params: 40.35M
19
+
20
+ [i] iteration=66, learning_rate=0.0070, loss=1.6635, time=18sec
21
+ [i] iteration=132, learning_rate=0.0069, loss=1.1385, time=17sec
22
+ [i] iteration=198, learning_rate=0.0069, loss=0.9417, time=17sec
23
+ [i] iteration=264, learning_rate=0.0068, loss=0.8400, time=17sec
24
+ [i] iteration=330, learning_rate=0.0068, loss=0.7766, time=17sec
25
+ [i] iteration=396, learning_rate=0.0067, loss=0.6704, time=17sec
26
+ [i] iteration=462, learning_rate=0.0067, loss=0.6700, time=17sec
27
+ [i] iteration=528, learning_rate=0.0067, loss=0.6208, time=17sec
28
+ [i] iteration=594, learning_rate=0.0066, loss=0.6388, time=17sec
29
+ [i] iteration=660, learning_rate=0.0066, loss=0.6167, time=17sec
30
+ [i] DeepLabv3+@ResNet-50@Fix@GN
31
+
32
+ [i] mean values is [0.485, 0.456, 0.406]
33
+ [i] std values is [0.229, 0.224, 0.225]
34
+ [i] The number of class is 20
35
+ [i] train_transform is Compose(
36
+ <tools.ai.augment_utils.RandomResize_For_Segmentation object at 0x7b724931be20>
37
+ <tools.ai.augment_utils.RandomHorizontalFlip_For_Segmentation object at 0x7b724931bd60>
38
+ <tools.ai.augment_utils.Normalize_For_Segmentation object at 0x7b724931bdc0>
39
+ <tools.ai.augment_utils.RandomCrop_For_Segmentation object at 0x7b724931be50>
40
+ <tools.ai.augment_utils.Transpose_For_Segmentation object at 0x7b724931beb0>
41
+ )
42
+
43
+ [i] log_iteration : 66
44
+ [i] val_iteration : 661
45
+ [i] max_iteration : 9,915
46
+ [i] Architecture is DeepLabv3+
47
+ [i] Total Params: 40.35M
48
+
49
+ [i] iteration=66, learning_rate=0.0070, loss=1.6640, time=18sec
50
+ [i] iteration=132, learning_rate=0.0069, loss=1.1375, time=17sec
51
+ [i] iteration=198, learning_rate=0.0069, loss=0.9249, time=17sec
52
+ [i] iteration=264, learning_rate=0.0068, loss=0.7839, time=17sec
53
+ [i] iteration=330, learning_rate=0.0068, loss=0.8084, time=17sec
54
+ [i] iteration=396, learning_rate=0.0067, loss=0.6803, time=17sec
55
+ [i] iteration=462, learning_rate=0.0067, loss=0.6661, time=17sec
56
+ [i] iteration=528, learning_rate=0.0067, loss=0.6199, time=17sec
57
+ [i] iteration=594, learning_rate=0.0066, loss=0.6303, time=17sec
58
+ [i] iteration=660, learning_rate=0.0066, loss=0.6040, time=17sec
59
+ [i] save model
60
+ [i] iteration=661, mIoU=40.20%, best_valid_mIoU=40.20%, time=38sec
61
+ [i] iteration=726, learning_rate=0.0065, loss=0.5300, time=55sec
62
+ [i] iteration=792, learning_rate=0.0065, loss=0.5670, time=17sec
63
+ [i] iteration=858, learning_rate=0.0065, loss=0.5230, time=17sec
64
+ [i] iteration=924, learning_rate=0.0064, loss=0.5736, time=17sec
65
+ [i] iteration=990, learning_rate=0.0064, loss=0.5719, time=17sec
66
+ [i] iteration=1,056, learning_rate=0.0063, loss=0.5016, time=17sec
67
+ [i] iteration=1,122, learning_rate=0.0063, loss=0.5114, time=17sec
68
+ [i] iteration=1,188, learning_rate=0.0062, loss=0.5154, time=17sec
69
+ [i] iteration=1,254, learning_rate=0.0062, loss=0.4591, time=17sec
70
+ [i] iteration=1,320, learning_rate=0.0062, loss=0.5086, time=17sec
71
+ [i] save model
72
+ [i] iteration=1,322, mIoU=46.93%, best_valid_mIoU=46.93%, time=38sec
73
+ [i] iteration=1,386, learning_rate=0.0061, loss=0.4478, time=56sec
74
+ [i] iteration=1,452, learning_rate=0.0061, loss=0.4730, time=17sec
75
+ [i] iteration=1,518, learning_rate=0.0060, loss=0.5368, time=17sec
76
+ [i] iteration=1,584, learning_rate=0.0060, loss=0.4908, time=17sec
77
+ [i] iteration=1,650, learning_rate=0.0059, loss=0.4658, time=17sec
78
+ [i] iteration=1,716, learning_rate=0.0059, loss=0.5231, time=17sec
79
+ [i] iteration=1,782, learning_rate=0.0059, loss=0.4553, time=17sec
80
+ [i] iteration=1,848, learning_rate=0.0058, loss=0.4160, time=17sec
81
+ [i] iteration=1,914, learning_rate=0.0058, loss=0.4270, time=17sec
82
+ [i] iteration=1,980, learning_rate=0.0057, loss=0.4344, time=17sec
83
+ [i] save model
84
+ [i] iteration=1,983, mIoU=50.79%, best_valid_mIoU=50.79%, time=38sec
85
+ [i] iteration=2,046, learning_rate=0.0057, loss=0.4106, time=56sec
86
+ [i] iteration=2,112, learning_rate=0.0056, loss=0.4332, time=17sec
87
+ [i] iteration=2,178, learning_rate=0.0056, loss=0.4205, time=17sec
88
+ [i] iteration=2,244, learning_rate=0.0056, loss=0.3834, time=17sec
89
+ [i] iteration=2,310, learning_rate=0.0055, loss=0.3868, time=17sec
90
+ [i] iteration=2,376, learning_rate=0.0055, loss=0.4297, time=17sec
91
+ [i] iteration=2,442, learning_rate=0.0054, loss=0.3851, time=17sec
92
+ [i] iteration=2,508, learning_rate=0.0054, loss=0.4366, time=17sec
93
+ [i] iteration=2,574, learning_rate=0.0053, loss=0.4140, time=17sec
94
+ [i] iteration=2,640, learning_rate=0.0053, loss=0.3849, time=17sec
95
+ [i] save model
96
+ [i] iteration=2,644, mIoU=51.25%, best_valid_mIoU=51.25%, time=38sec
97
+ [i] iteration=2,706, learning_rate=0.0053, loss=0.3532, time=56sec
98
+ [i] iteration=2,772, learning_rate=0.0052, loss=0.3969, time=17sec
99
+ [i] iteration=2,838, learning_rate=0.0052, loss=0.3573, time=17sec
100
+ [i] iteration=2,904, learning_rate=0.0051, loss=0.3661, time=17sec
101
+ [i] iteration=2,970, learning_rate=0.0051, loss=0.3844, time=17sec
102
+ [i] iteration=3,036, learning_rate=0.0050, loss=0.3913, time=17sec
103
+ [i] iteration=3,102, learning_rate=0.0050, loss=0.3605, time=17sec
104
+ [i] iteration=3,168, learning_rate=0.0050, loss=0.4062, time=17sec
105
+ [i] iteration=3,234, learning_rate=0.0049, loss=0.3763, time=17sec
106
+ [i] iteration=3,300, learning_rate=0.0049, loss=0.3885, time=17sec
107
+ [i] iteration=3,305, mIoU=49.77%, best_valid_mIoU=51.25%, time=38sec
108
+ [i] iteration=3,366, learning_rate=0.0048, loss=0.3577, time=56sec
109
+ [i] iteration=3,432, learning_rate=0.0048, loss=0.3556, time=17sec
110
+ [i] iteration=3,498, learning_rate=0.0047, loss=0.3837, time=17sec
111
+ [i] iteration=3,564, learning_rate=0.0047, loss=0.3703, time=17sec
112
+ [i] iteration=3,630, learning_rate=0.0046, loss=0.3720, time=17sec
113
+ [i] iteration=3,696, learning_rate=0.0046, loss=0.3600, time=17sec
114
+ [i] iteration=3,762, learning_rate=0.0046, loss=0.3618, time=17sec
115
+ [i] iteration=3,828, learning_rate=0.0045, loss=0.3650, time=17sec
116
+ [i] iteration=3,894, learning_rate=0.0045, loss=0.4094, time=17sec
117
+ [i] iteration=3,960, learning_rate=0.0044, loss=0.3648, time=17sec
118
+ [i] save model
119
+ [i] iteration=3,966, mIoU=53.03%, best_valid_mIoU=53.03%, time=38sec
120
+ [i] iteration=4,026, learning_rate=0.0044, loss=0.3729, time=56sec
121
+ [i] iteration=4,092, learning_rate=0.0043, loss=0.3564, time=17sec
122
+ [i] iteration=4,158, learning_rate=0.0043, loss=0.3481, time=17sec
123
+ [i] iteration=4,224, learning_rate=0.0042, loss=0.3464, time=17sec
124
+ [i] iteration=4,290, learning_rate=0.0042, loss=0.3544, time=17sec
125
+ [i] iteration=4,356, learning_rate=0.0042, loss=0.3619, time=17sec
126
+ [i] iteration=4,422, learning_rate=0.0041, loss=0.3461, time=17sec
127
+ [i] iteration=4,488, learning_rate=0.0041, loss=0.3715, time=17sec
128
+ [i] iteration=4,554, learning_rate=0.0040, loss=0.3182, time=17sec
129
+ [i] iteration=4,620, learning_rate=0.0040, loss=0.3448, time=17sec
130
+ [i] save model
131
+ [i] iteration=4,627, mIoU=53.53%, best_valid_mIoU=53.53%, time=38sec
132
+ [i] iteration=4,686, learning_rate=0.0039, loss=0.3394, time=56sec
133
+ [i] iteration=4,752, learning_rate=0.0039, loss=0.3264, time=17sec
134
+ [i] iteration=4,818, learning_rate=0.0038, loss=0.3340, time=17sec
135
+ [i] iteration=4,884, learning_rate=0.0038, loss=0.3304, time=17sec
136
+ [i] iteration=4,950, learning_rate=0.0038, loss=0.3350, time=17sec
137
+ [i] iteration=5,016, learning_rate=0.0037, loss=0.3412, time=17sec
138
+ [i] iteration=5,082, learning_rate=0.0037, loss=0.3317, time=17sec
139
+ [i] iteration=5,148, learning_rate=0.0036, loss=0.3452, time=17sec
140
+ [i] iteration=5,214, learning_rate=0.0036, loss=0.3681, time=17sec
141
+ [i] iteration=5,280, learning_rate=0.0035, loss=0.3098, time=17sec
142
+ [i] save model
143
+ [i] iteration=5,288, mIoU=53.69%, best_valid_mIoU=53.69%, time=38sec
144
+ [i] iteration=5,346, learning_rate=0.0035, loss=0.2972, time=56sec
145
+ [i] iteration=5,412, learning_rate=0.0034, loss=0.3036, time=17sec
146
+ [i] iteration=5,478, learning_rate=0.0034, loss=0.3157, time=17sec
147
+ [i] iteration=5,544, learning_rate=0.0034, loss=0.3159, time=17sec
148
+ [i] iteration=5,610, learning_rate=0.0033, loss=0.3297, time=17sec
149
+ [i] iteration=5,676, learning_rate=0.0033, loss=0.3275, time=17sec
150
+ [i] iteration=5,742, learning_rate=0.0032, loss=0.3331, time=17sec
151
+ [i] iteration=5,808, learning_rate=0.0032, loss=0.3217, time=17sec
152
+ [i] iteration=5,874, learning_rate=0.0031, loss=0.3111, time=17sec
153
+ [i] iteration=5,940, learning_rate=0.0031, loss=0.3477, time=17sec
154
+ [i] save model
155
+ [i] iteration=5,949, mIoU=53.96%, best_valid_mIoU=53.96%, time=38sec
156
+ [i] iteration=6,006, learning_rate=0.0030, loss=0.3148, time=56sec
157
+ [i] iteration=6,072, learning_rate=0.0030, loss=0.2941, time=17sec
158
+ [i] iteration=6,138, learning_rate=0.0029, loss=0.3113, time=17sec
159
+ [i] iteration=6,204, learning_rate=0.0029, loss=0.3195, time=17sec
160
+ [i] iteration=6,270, learning_rate=0.0028, loss=0.3025, time=17sec
161
+ [i] iteration=6,336, learning_rate=0.0028, loss=0.3077, time=17sec
162
+ [i] iteration=6,402, learning_rate=0.0028, loss=0.3175, time=17sec
163
+ [i] iteration=6,468, learning_rate=0.0027, loss=0.3168, time=17sec
164
+ [i] iteration=6,534, learning_rate=0.0027, loss=0.3162, time=17sec
165
+ [i] iteration=6,600, learning_rate=0.0026, loss=0.3190, time=17sec
166
+ [i] iteration=6,610, mIoU=53.62%, best_valid_mIoU=53.96%, time=37sec
167
+ [i] iteration=6,666, learning_rate=0.0026, loss=0.3074, time=55sec
168
+ [i] iteration=6,732, learning_rate=0.0025, loss=0.3036, time=17sec
169
+ [i] iteration=6,798, learning_rate=0.0025, loss=0.3042, time=17sec
170
+ [i] iteration=6,864, learning_rate=0.0024, loss=0.3041, time=17sec
171
+ [i] iteration=6,930, learning_rate=0.0024, loss=0.3093, time=17sec
172
+ [i] iteration=6,996, learning_rate=0.0023, loss=0.3124, time=17sec
173
+ [i] iteration=7,062, learning_rate=0.0023, loss=0.3095, time=17sec
174
+ [i] iteration=7,128, learning_rate=0.0022, loss=0.2930, time=17sec
175
+ [i] iteration=7,194, learning_rate=0.0022, loss=0.2987, time=17sec
176
+ [i] iteration=7,260, learning_rate=0.0021, loss=0.2987, time=17sec
177
+ [i] iteration=7,271, mIoU=53.70%, best_valid_mIoU=53.96%, time=37sec
178
+ [i] iteration=7,326, learning_rate=0.0021, loss=0.2850, time=55sec
179
+ [i] iteration=7,392, learning_rate=0.0020, loss=0.2973, time=17sec
180
+ [i] iteration=7,458, learning_rate=0.0020, loss=0.2897, time=17sec
181
+ [i] iteration=7,524, learning_rate=0.0019, loss=0.2875, time=17sec
182
+ [i] iteration=7,590, learning_rate=0.0019, loss=0.2958, time=17sec
183
+ [i] iteration=7,656, learning_rate=0.0018, loss=0.2981, time=17sec
184
+ [i] iteration=7,722, learning_rate=0.0018, loss=0.3028, time=17sec
185
+ [i] iteration=7,788, learning_rate=0.0018, loss=0.2850, time=17sec
186
+ [i] iteration=7,854, learning_rate=0.0017, loss=0.2987, time=17sec
187
+ [i] iteration=7,920, learning_rate=0.0017, loss=0.2677, time=17sec
188
+ [i] save model
189
+ [i] iteration=7,932, mIoU=54.37%, best_valid_mIoU=54.37%, time=38sec
190
+ [i] iteration=7,986, learning_rate=0.0016, loss=0.2964, time=56sec
191
+ [i] iteration=8,052, learning_rate=0.0016, loss=0.2886, time=17sec
192
+ [i] iteration=8,118, learning_rate=0.0015, loss=0.2892, time=17sec
193
+ [i] iteration=8,184, learning_rate=0.0015, loss=0.2826, time=17sec
194
+ [i] iteration=8,250, learning_rate=0.0014, loss=0.2820, time=17sec
195
+ [i] iteration=8,316, learning_rate=0.0014, loss=0.2768, time=17sec
196
+ [i] iteration=8,382, learning_rate=0.0013, loss=0.2835, time=17sec
197
+ [i] iteration=8,448, learning_rate=0.0013, loss=0.2853, time=17sec
198
+ [i] iteration=8,514, learning_rate=0.0012, loss=0.2774, time=17sec
199
+ [i] iteration=8,580, learning_rate=0.0012, loss=0.2760, time=17sec
200
+ [i] iteration=8,593, mIoU=54.07%, best_valid_mIoU=54.37%, time=37sec
201
+ [i] iteration=8,646, learning_rate=0.0011, loss=0.2826, time=55sec
202
+ [i] iteration=8,712, learning_rate=0.0010, loss=0.2559, time=17sec
203
+ [i] iteration=8,778, learning_rate=0.0010, loss=0.2634, time=17sec
204
+ [i] iteration=8,844, learning_rate=0.0009, loss=0.2811, time=17sec
205
+ [i] iteration=8,910, learning_rate=0.0009, loss=0.2935, time=17sec
206
+ [i] iteration=8,976, learning_rate=0.0008, loss=0.2786, time=17sec
207
+ [i] iteration=9,042, learning_rate=0.0008, loss=0.2715, time=17sec
208
+ [i] iteration=9,108, learning_rate=0.0007, loss=0.2898, time=17sec
209
+ [i] iteration=9,174, learning_rate=0.0007, loss=0.2847, time=17sec
210
+ [i] iteration=9,240, learning_rate=0.0006, loss=0.2928, time=17sec
211
+ [i] save model
212
+ [i] iteration=9,254, mIoU=55.12%, best_valid_mIoU=55.12%, time=38sec
213
+ [i] iteration=9,306, learning_rate=0.0006, loss=0.2850, time=56sec
214
+ [i] iteration=9,372, learning_rate=0.0005, loss=0.2861, time=17sec
215
+ [i] iteration=9,438, learning_rate=0.0005, loss=0.2701, time=17sec
216
+ [i] iteration=9,504, learning_rate=0.0004, loss=0.2785, time=17sec
217
+ [i] iteration=9,570, learning_rate=0.0003, loss=0.2818, time=17sec
218
+ [i] iteration=9,636, learning_rate=0.0003, loss=0.2744, time=17sec
219
+ [i] iteration=9,702, learning_rate=0.0002, loss=0.2816, time=17sec
220
+ [i] iteration=9,768, learning_rate=0.0002, loss=0.2616, time=17sec
221
+ [i] iteration=9,834, learning_rate=0.0001, loss=0.2540, time=17sec
222
+ [i] iteration=9,900, learning_rate=0.0000, loss=0.2749, time=17sec
223
+ [i] iteration=9,915, mIoU=55.09%, best_valid_mIoU=55.12%, time=38sec
experiments/logs/ResNet50@Puzzle@optimal.txt ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [i] ResNet50@Puzzle@optimal
2
+
3
+ [i] mean values is [0.485, 0.456, 0.406]
4
+ [i] std values is [0.229, 0.224, 0.225]
5
+ [i] The number of class is 20
6
+ [i] train_transform is Compose(
7
+ <tools.ai.augment_utils.RandomResize object at 0x7b9d81d50520>
8
+ <tools.ai.augment_utils.RandomHorizontalFlip object at 0x7b9d81d50490>
9
+ <tools.ai.augment_utils.Normalize object at 0x7b9d81d50730>
10
+ <tools.ai.augment_utils.RandomCrop object at 0x7b9d81d503d0>
11
+ <tools.ai.augment_utils.Transpose object at 0x7b9d81d50430>
12
+ )
13
+ [i] test_transform is Compose(
14
+ <tools.ai.augment_utils.Normalize_For_Segmentation object at 0x7b9d81d502b0>
15
+ <tools.ai.augment_utils.Top_Left_Crop_For_Segmentation object at 0x7b9d81d500d0>
16
+ <tools.ai.augment_utils.Transpose_For_Segmentation object at 0x7b9d81d50100>
17
+ )
18
+
19
+ [i] log_iteration : 66
20
+ [i] val_iteration : 661
21
+ [i] max_iteration : 9,915
22
+ [i] Architecture is resnet50
23
+ [i] Total Params: 23.55M
24
+
25
+ [i] The number of pretrained weights : 106
26
+ [i] The number of pretrained bias : 53
27
+ [i] The number of scratched weights : 1
28
+ [i] The number of scratched bias : 0
29
+ [i] iteration=66, learning_rate=0.0994, alpha=0.03, loss=0.5450, class_loss=0.2720, p_class_loss=0.2716, re_loss=0.0728, conf_loss=0.0000, time=17sec
30
+ [i] iteration=132, learning_rate=0.0988, alpha=0.08, loss=0.3240, class_loss=0.1571, p_class_loss=0.1604, re_loss=0.0800, conf_loss=0.0000, time=15sec
31
+ [i] iteration=198, learning_rate=0.0982, alpha=0.13, loss=0.2655, class_loss=0.1247, p_class_loss=0.1286, re_loss=0.0920, conf_loss=0.0000, time=15sec
32
+ [i] iteration=264, learning_rate=0.0976, alpha=0.19, loss=0.2734, class_loss=0.1248, p_class_loss=0.1296, re_loss=0.1020, conf_loss=0.0000, time=15sec
33
+ [i] iteration=330, learning_rate=0.0970, alpha=0.24, loss=0.2663, class_loss=0.1184, p_class_loss=0.1237, re_loss=0.1012, conf_loss=0.0000, time=15sec
34
+ [i] iteration=396, learning_rate=0.0964, alpha=0.29, loss=0.2637, class_loss=0.1147, p_class_loss=0.1193, re_loss=0.1016, conf_loss=0.0000, time=15sec
35
+ [i] iteration=462, learning_rate=0.0958, alpha=0.35, loss=0.2497, class_loss=0.1052, p_class_loss=0.1096, re_loss=0.1011, conf_loss=0.0000, time=15sec
36
+ [i] iteration=528, learning_rate=0.0952, alpha=0.40, loss=0.2480, class_loss=0.1024, p_class_loss=0.1073, re_loss=0.0960, conf_loss=0.0000, time=15sec
37
+ [i] iteration=594, learning_rate=0.0946, alpha=0.45, loss=0.2408, class_loss=0.0982, p_class_loss=0.1023, re_loss=0.0892, conf_loss=0.0000, time=15sec
38
+ [i] iteration=660, learning_rate=0.0940, alpha=0.51, loss=0.2340, class_loss=0.0930, p_class_loss=0.0967, re_loss=0.0879, conf_loss=0.0000, time=15sec
39
+ [i] save model
40
+ [i] iteration=661, threshold=0.10, train_mIoU=40.43%, best_train_mIoU=40.43%, time=18sec
41
+ [i] iteration=726, learning_rate=0.0934, alpha=0.56, loss=0.2258, class_loss=0.0862, p_class_loss=0.0908, re_loss=0.0873, conf_loss=0.0000, time=34sec
42
+ [i] iteration=792, learning_rate=0.0928, alpha=0.61, loss=0.2239, class_loss=0.0842, p_class_loss=0.0881, re_loss=0.0844, conf_loss=0.0000, time=15sec
43
+ [i] iteration=858, learning_rate=0.0922, alpha=0.67, loss=0.2513, class_loss=0.0957, p_class_loss=0.0998, re_loss=0.0839, conf_loss=0.0000, time=15sec
44
+ [i] iteration=924, learning_rate=0.0916, alpha=0.72, loss=0.2326, class_loss=0.0871, p_class_loss=0.0914, re_loss=0.0753, conf_loss=0.0000, time=15sec
45
+ [i] iteration=990, learning_rate=0.0910, alpha=0.77, loss=0.2415, class_loss=0.0887, p_class_loss=0.0934, re_loss=0.0771, conf_loss=0.0000, time=15sec
46
+ [i] iteration=1,056, learning_rate=0.0904, alpha=0.83, loss=0.2436, class_loss=0.0887, p_class_loss=0.0931, re_loss=0.0749, conf_loss=0.0000, time=15sec
47
+ [i] iteration=1,122, learning_rate=0.0898, alpha=0.88, loss=0.2431, class_loss=0.0885, p_class_loss=0.0923, re_loss=0.0709, conf_loss=0.0000, time=15sec
48
+ [i] iteration=1,188, learning_rate=0.0892, alpha=0.93, loss=0.2383, class_loss=0.0846, p_class_loss=0.0887, re_loss=0.0698, conf_loss=0.0000, time=15sec
49
+ [i] iteration=1,254, learning_rate=0.0886, alpha=0.98, loss=0.2512, class_loss=0.0905, p_class_loss=0.0949, re_loss=0.0668, conf_loss=0.0000, time=15sec
50
+ [i] iteration=1,320, learning_rate=0.0879, alpha=1.04, loss=0.2436, class_loss=0.0860, p_class_loss=0.0902, re_loss=0.0649, conf_loss=0.0000, time=15sec
51
+ [i] save model
52
+ [i] iteration=1,322, threshold=0.10, train_mIoU=43.46%, best_train_mIoU=43.46%, time=18sec
53
+ [i] iteration=1,386, learning_rate=0.0873, alpha=1.09, loss=0.2324, class_loss=0.0796, p_class_loss=0.0843, re_loss=0.0628, conf_loss=0.0000, time=34sec
54
+ [i] iteration=1,452, learning_rate=0.0867, alpha=1.14, loss=0.2405, class_loss=0.0829, p_class_loss=0.0869, re_loss=0.0618, conf_loss=0.0000, time=15sec
55
+ [i] iteration=1,518, learning_rate=0.0861, alpha=1.20, loss=0.2409, class_loss=0.0820, p_class_loss=0.0863, re_loss=0.0606, conf_loss=0.0000, time=15sec
56
+ [i] iteration=1,584, learning_rate=0.0855, alpha=1.25, loss=0.2384, class_loss=0.0817, p_class_loss=0.0860, re_loss=0.0564, conf_loss=0.0000, time=15sec
57
+ [i] iteration=1,650, learning_rate=0.0849, alpha=1.30, loss=0.2454, class_loss=0.0832, p_class_loss=0.0869, re_loss=0.0578, conf_loss=0.0000, time=15sec
58
+ [i] iteration=1,716, learning_rate=0.0843, alpha=1.36, loss=0.2452, class_loss=0.0819, p_class_loss=0.0863, re_loss=0.0568, conf_loss=0.0000, time=15sec
59
+ [i] iteration=1,782, learning_rate=0.0837, alpha=1.41, loss=0.2589, class_loss=0.0876, p_class_loss=0.0915, re_loss=0.0565, conf_loss=0.0000, time=15sec
60
+ [i] iteration=1,848, learning_rate=0.0831, alpha=1.46, loss=0.2510, class_loss=0.0851, p_class_loss=0.0891, re_loss=0.0525, conf_loss=0.0000, time=15sec
61
+ [i] iteration=1,914, learning_rate=0.0825, alpha=1.52, loss=0.2478, class_loss=0.0831, p_class_loss=0.0872, re_loss=0.0511, conf_loss=0.0000, time=15sec
62
+ [i] iteration=1,980, learning_rate=0.0818, alpha=1.57, loss=0.2568, class_loss=0.0858, p_class_loss=0.0899, re_loss=0.0516, conf_loss=0.0000, time=15sec
63
+ [i] iteration=1,983, threshold=0.10, train_mIoU=43.18%, best_train_mIoU=43.46%, time=17sec
64
+ [i] iteration=2,046, learning_rate=0.0812, alpha=1.62, loss=0.2431, class_loss=0.0796, p_class_loss=0.0835, re_loss=0.0493, conf_loss=0.0000, time=34sec
65
+ [i] iteration=2,112, learning_rate=0.0806, alpha=1.68, loss=0.2583, class_loss=0.0855, p_class_loss=0.0897, re_loss=0.0496, conf_loss=0.0000, time=15sec
66
+ [i] iteration=2,178, learning_rate=0.0800, alpha=1.73, loss=0.2435, class_loss=0.0797, p_class_loss=0.0837, re_loss=0.0463, conf_loss=0.0000, time=15sec
67
+ [i] iteration=2,244, learning_rate=0.0794, alpha=1.78, loss=0.2551, class_loss=0.0834, p_class_loss=0.0877, re_loss=0.0471, conf_loss=0.0000, time=15sec
68
+ [i] iteration=2,310, learning_rate=0.0788, alpha=1.84, loss=0.2540, class_loss=0.0833, p_class_loss=0.0879, re_loss=0.0450, conf_loss=0.0000, time=15sec
69
+ [i] iteration=2,376, learning_rate=0.0782, alpha=1.89, loss=0.2583, class_loss=0.0841, p_class_loss=0.0890, re_loss=0.0451, conf_loss=0.0000, time=15sec
70
+ [i] iteration=2,442, learning_rate=0.0775, alpha=1.94, loss=0.2598, class_loss=0.0858, p_class_loss=0.0898, re_loss=0.0433, conf_loss=0.0000, time=15sec
71
+ [i] iteration=2,508, learning_rate=0.0769, alpha=2.00, loss=0.2635, class_loss=0.0871, p_class_loss=0.0911, re_loss=0.0427, conf_loss=0.0000, time=15sec
72
+ [i] iteration=2,574, learning_rate=0.0763, alpha=2.05, loss=0.2546, class_loss=0.0815, p_class_loss=0.0855, re_loss=0.0427, conf_loss=0.0000, time=15sec
73
+ [i] iteration=2,640, learning_rate=0.0757, alpha=2.10, loss=0.2583, class_loss=0.0855, p_class_loss=0.0894, re_loss=0.0396, conf_loss=0.0000, time=15sec
74
+ [i] save model
75
+ [i] iteration=2,644, threshold=0.10, train_mIoU=44.51%, best_train_mIoU=44.51%, time=18sec
76
+ [i] iteration=2,706, learning_rate=0.0751, alpha=2.16, loss=0.2611, class_loss=0.0843, p_class_loss=0.0881, re_loss=0.0411, conf_loss=0.0000, time=34sec
77
+ [i] iteration=2,772, learning_rate=0.0745, alpha=2.21, loss=0.2525, class_loss=0.0810, p_class_loss=0.0847, re_loss=0.0393, conf_loss=0.0000, time=15sec
78
+ [i] iteration=2,838, learning_rate=0.0738, alpha=2.26, loss=0.2540, class_loss=0.0816, p_class_loss=0.0857, re_loss=0.0383, conf_loss=0.0000, time=15sec
79
+ [i] iteration=2,904, learning_rate=0.0732, alpha=2.32, loss=0.2652, class_loss=0.0844, p_class_loss=0.0884, re_loss=0.0399, conf_loss=0.0000, time=15sec
80
+ [i] iteration=2,970, learning_rate=0.0726, alpha=2.37, loss=0.2607, class_loss=0.0836, p_class_loss=0.0875, re_loss=0.0378, conf_loss=0.0000, time=15sec
81
+ [i] iteration=3,036, learning_rate=0.0720, alpha=2.42, loss=0.2755, class_loss=0.0893, p_class_loss=0.0935, re_loss=0.0383, conf_loss=0.0000, time=15sec
82
+ [i] iteration=3,102, learning_rate=0.0714, alpha=2.48, loss=0.2690, class_loss=0.0872, p_class_loss=0.0913, re_loss=0.0366, conf_loss=0.0000, time=15sec
83
+ [i] iteration=3,168, learning_rate=0.0707, alpha=2.53, loss=0.2728, class_loss=0.0901, p_class_loss=0.0939, re_loss=0.0351, conf_loss=0.0000, time=15sec
84
+ [i] iteration=3,234, learning_rate=0.0701, alpha=2.58, loss=0.2591, class_loss=0.0822, p_class_loss=0.0865, re_loss=0.0350, conf_loss=0.0000, time=15sec
85
+ [i] iteration=3,300, learning_rate=0.0695, alpha=2.64, loss=0.2650, class_loss=0.0854, p_class_loss=0.0892, re_loss=0.0343, conf_loss=0.0000, time=15sec
86
+ [i] save model
87
+ [i] iteration=3,305, threshold=0.10, train_mIoU=45.10%, best_train_mIoU=45.10%, time=18sec
88
+ [i] iteration=3,366, learning_rate=0.0689, alpha=2.69, loss=0.2514, class_loss=0.0783, p_class_loss=0.0823, re_loss=0.0338, conf_loss=0.0000, time=34sec
89
+ [i] iteration=3,432, learning_rate=0.0682, alpha=2.74, loss=0.2762, class_loss=0.0893, p_class_loss=0.0933, re_loss=0.0341, conf_loss=0.0000, time=15sec
90
+ [i] iteration=3,498, learning_rate=0.0676, alpha=2.80, loss=0.2591, class_loss=0.0813, p_class_loss=0.0847, re_loss=0.0333, conf_loss=0.0000, time=15sec
91
+ [i] iteration=3,564, learning_rate=0.0670, alpha=2.85, loss=0.2858, class_loss=0.0919, p_class_loss=0.0962, re_loss=0.0343, conf_loss=0.0000, time=15sec
92
+ [i] iteration=3,630, learning_rate=0.0664, alpha=2.90, loss=0.2693, class_loss=0.0856, p_class_loss=0.0902, re_loss=0.0322, conf_loss=0.0000, time=15sec
93
+ [i] iteration=3,696, learning_rate=0.0657, alpha=2.96, loss=0.2648, class_loss=0.0845, p_class_loss=0.0881, re_loss=0.0312, conf_loss=0.0000, time=15sec
94
+ [i] iteration=3,762, learning_rate=0.0651, alpha=3.01, loss=0.2704, class_loss=0.0865, p_class_loss=0.0907, re_loss=0.0310, conf_loss=0.0000, time=15sec
95
+ [i] iteration=3,828, learning_rate=0.0645, alpha=3.06, loss=0.2752, class_loss=0.0883, p_class_loss=0.0921, re_loss=0.0310, conf_loss=0.0000, time=15sec
96
+ [i] iteration=3,894, learning_rate=0.0638, alpha=3.11, loss=0.2768, class_loss=0.0883, p_class_loss=0.0921, re_loss=0.0309, conf_loss=0.0000, time=15sec
97
+ [i] iteration=3,960, learning_rate=0.0632, alpha=3.17, loss=0.2772, class_loss=0.0894, p_class_loss=0.0932, re_loss=0.0299, conf_loss=0.0000, time=15sec
98
+ [i] save model
99
+ [i] iteration=3,966, threshold=0.10, train_mIoU=46.22%, best_train_mIoU=46.22%, time=18sec
100
+ [i] iteration=4,026, learning_rate=0.0626, alpha=3.22, loss=0.2772, class_loss=0.0880, p_class_loss=0.0916, re_loss=0.0303, conf_loss=0.0000, time=34sec
101
+ [i] iteration=4,092, learning_rate=0.0619, alpha=3.27, loss=0.2782, class_loss=0.0884, p_class_loss=0.0925, re_loss=0.0297, conf_loss=0.0000, time=15sec
102
+ [i] iteration=4,158, learning_rate=0.0613, alpha=3.33, loss=0.2727, class_loss=0.0879, p_class_loss=0.0918, re_loss=0.0280, conf_loss=0.0000, time=15sec
103
+ [i] iteration=4,224, learning_rate=0.0607, alpha=3.38, loss=0.2739, class_loss=0.0872, p_class_loss=0.0913, re_loss=0.0282, conf_loss=0.0000, time=15sec
104
+ [i] iteration=4,290, learning_rate=0.0601, alpha=3.43, loss=0.2813, class_loss=0.0892, p_class_loss=0.0932, re_loss=0.0288, conf_loss=0.0000, time=15sec
105
+ [i] iteration=4,356, learning_rate=0.0594, alpha=3.49, loss=0.2800, class_loss=0.0912, p_class_loss=0.0951, re_loss=0.0269, conf_loss=0.0000, time=15sec
106
+ [i] iteration=4,422, learning_rate=0.0588, alpha=3.54, loss=0.2824, class_loss=0.0909, p_class_loss=0.0948, re_loss=0.0273, conf_loss=0.0000, time=15sec
107
+ [i] iteration=4,488, learning_rate=0.0581, alpha=3.59, loss=0.2726, class_loss=0.0877, p_class_loss=0.0913, re_loss=0.0261, conf_loss=0.0000, time=15sec
108
+ [i] iteration=4,554, learning_rate=0.0575, alpha=3.65, loss=0.2724, class_loss=0.0873, p_class_loss=0.0913, re_loss=0.0257, conf_loss=0.0000, time=15sec
109
+ [i] iteration=4,620, learning_rate=0.0569, alpha=3.70, loss=0.2819, class_loss=0.0911, p_class_loss=0.0948, re_loss=0.0259, conf_loss=0.0000, time=15sec
110
+ [i] iteration=4,627, threshold=0.10, train_mIoU=45.99%, best_train_mIoU=46.22%, time=17sec
111
+ [i] iteration=4,686, learning_rate=0.0562, alpha=3.75, loss=0.2867, class_loss=0.0922, p_class_loss=0.0960, re_loss=0.0262, conf_loss=0.0000, time=34sec
112
+ [i] iteration=4,752, learning_rate=0.0556, alpha=3.81, loss=0.2750, class_loss=0.0880, p_class_loss=0.0918, re_loss=0.0250, conf_loss=0.0000, time=15sec
113
+ [i] iteration=4,818, learning_rate=0.0550, alpha=3.86, loss=0.2699, class_loss=0.0854, p_class_loss=0.0889, re_loss=0.0248, conf_loss=0.0000, time=15sec
114
+ [i] iteration=4,884, learning_rate=0.0543, alpha=3.91, loss=0.2864, class_loss=0.0915, p_class_loss=0.0951, re_loss=0.0255, conf_loss=0.0000, time=15sec
115
+ [i] iteration=4,950, learning_rate=0.0537, alpha=3.97, loss=0.2827, class_loss=0.0912, p_class_loss=0.0949, re_loss=0.0243, conf_loss=0.0000, time=15sec
116
+ [i] iteration=5,016, learning_rate=0.0530, alpha=4.00, loss=0.2900, class_loss=0.0932, p_class_loss=0.0970, re_loss=0.0249, conf_loss=0.0000, time=15sec
117
+ [i] iteration=5,082, learning_rate=0.0524, alpha=4.00, loss=0.2810, class_loss=0.0896, p_class_loss=0.0935, re_loss=0.0245, conf_loss=0.0000, time=15sec
118
+ [i] iteration=5,148, learning_rate=0.0517, alpha=4.00, loss=0.2826, class_loss=0.0911, p_class_loss=0.0947, re_loss=0.0242, conf_loss=0.0000, time=15sec
119
+ [i] iteration=5,214, learning_rate=0.0511, alpha=4.00, loss=0.2820, class_loss=0.0909, p_class_loss=0.0948, re_loss=0.0241, conf_loss=0.0000, time=15sec
120
+ [i] iteration=5,280, learning_rate=0.0505, alpha=4.00, loss=0.2832, class_loss=0.0922, p_class_loss=0.0959, re_loss=0.0238, conf_loss=0.0000, time=15sec
121
+ [i] iteration=5,288, threshold=0.10, train_mIoU=45.94%, best_train_mIoU=46.22%, time=18sec
122
+ [i] iteration=5,346, learning_rate=0.0498, alpha=4.00, loss=0.2745, class_loss=0.0878, p_class_loss=0.0916, re_loss=0.0238, conf_loss=0.0000, time=34sec
123
+ [i] iteration=5,412, learning_rate=0.0492, alpha=4.00, loss=0.2867, class_loss=0.0933, p_class_loss=0.0971, re_loss=0.0241, conf_loss=0.0000, time=15sec
124
+ [i] iteration=5,478, learning_rate=0.0485, alpha=4.00, loss=0.2826, class_loss=0.0931, p_class_loss=0.0968, re_loss=0.0232, conf_loss=0.0000, time=15sec
125
+ [i] iteration=5,544, learning_rate=0.0479, alpha=4.00, loss=0.2708, class_loss=0.0865, p_class_loss=0.0905, re_loss=0.0234, conf_loss=0.0000, time=15sec
126
+ [i] iteration=5,610, learning_rate=0.0472, alpha=4.00, loss=0.2724, class_loss=0.0871, p_class_loss=0.0911, re_loss=0.0236, conf_loss=0.0000, time=15sec
127
+ [i] iteration=5,676, learning_rate=0.0466, alpha=4.00, loss=0.2745, class_loss=0.0871, p_class_loss=0.0910, re_loss=0.0241, conf_loss=0.0000, time=15sec
128
+ [i] iteration=5,742, learning_rate=0.0459, alpha=4.00, loss=0.2714, class_loss=0.0877, p_class_loss=0.0913, re_loss=0.0231, conf_loss=0.0000, time=15sec
129
+ [i] iteration=5,808, learning_rate=0.0452, alpha=4.00, loss=0.2797, class_loss=0.0911, p_class_loss=0.0949, re_loss=0.0234, conf_loss=0.0000, time=15sec
130
+ [i] iteration=5,874, learning_rate=0.0446, alpha=4.00, loss=0.2769, class_loss=0.0914, p_class_loss=0.0949, re_loss=0.0227, conf_loss=0.0000, time=15sec
131
+ [i] iteration=5,940, learning_rate=0.0439, alpha=4.00, loss=0.2750, class_loss=0.0889, p_class_loss=0.0927, re_loss=0.0233, conf_loss=0.0000, time=15sec
132
+ [i] iteration=5,949, threshold=0.10, train_mIoU=46.19%, best_train_mIoU=46.22%, time=17sec
133
+ [i] iteration=6,006, learning_rate=0.0433, alpha=4.00, loss=0.2710, class_loss=0.0880, p_class_loss=0.0917, re_loss=0.0228, conf_loss=0.0000, time=34sec
134
+ [i] iteration=6,072, learning_rate=0.0426, alpha=4.00, loss=0.2694, class_loss=0.0884, p_class_loss=0.0919, re_loss=0.0223, conf_loss=0.0000, time=15sec
135
+ [i] iteration=6,138, learning_rate=0.0420, alpha=4.00, loss=0.2777, class_loss=0.0895, p_class_loss=0.0933, re_loss=0.0237, conf_loss=0.0000, time=15sec
136
+ [i] iteration=6,204, learning_rate=0.0413, alpha=4.00, loss=0.2700, class_loss=0.0880, p_class_loss=0.0919, re_loss=0.0225, conf_loss=0.0000, time=15sec
137
+ [i] iteration=6,270, learning_rate=0.0406, alpha=4.00, loss=0.2749, class_loss=0.0894, p_class_loss=0.0929, re_loss=0.0231, conf_loss=0.0000, time=15sec
138
+ [i] iteration=6,336, learning_rate=0.0400, alpha=4.00, loss=0.2713, class_loss=0.0875, p_class_loss=0.0914, re_loss=0.0231, conf_loss=0.0000, time=15sec
139
+ [i] iteration=6,402, learning_rate=0.0393, alpha=4.00, loss=0.2701, class_loss=0.0871, p_class_loss=0.0906, re_loss=0.0231, conf_loss=0.0000, time=15sec
140
+ [i] iteration=6,468, learning_rate=0.0386, alpha=4.00, loss=0.2666, class_loss=0.0865, p_class_loss=0.0901, re_loss=0.0225, conf_loss=0.0000, time=15sec
141
+ [i] iteration=6,534, learning_rate=0.0380, alpha=4.00, loss=0.2677, class_loss=0.0849, p_class_loss=0.0887, re_loss=0.0235, conf_loss=0.0000, time=15sec
142
+ [i] iteration=6,600, learning_rate=0.0373, alpha=4.00, loss=0.2730, class_loss=0.0907, p_class_loss=0.0944, re_loss=0.0220, conf_loss=0.0000, time=15sec
143
+ [i] iteration=6,610, threshold=0.10, train_mIoU=45.70%, best_train_mIoU=46.22%, time=18sec
144
+ [i] iteration=6,666, learning_rate=0.0366, alpha=4.00, loss=0.2714, class_loss=0.0878, p_class_loss=0.0917, re_loss=0.0230, conf_loss=0.0000, time=34sec
145
+ [i] iteration=6,732, learning_rate=0.0360, alpha=4.00, loss=0.2584, class_loss=0.0832, p_class_loss=0.0867, re_loss=0.0222, conf_loss=0.0000, time=15sec
146
+ [i] iteration=6,798, learning_rate=0.0353, alpha=4.00, loss=0.2658, class_loss=0.0863, p_class_loss=0.0902, re_loss=0.0223, conf_loss=0.0000, time=15sec
147
+ [i] iteration=6,864, learning_rate=0.0346, alpha=4.00, loss=0.2640, class_loss=0.0841, p_class_loss=0.0881, re_loss=0.0229, conf_loss=0.0000, time=15sec
148
+ [i] iteration=6,930, learning_rate=0.0340, alpha=4.00, loss=0.2637, class_loss=0.0854, p_class_loss=0.0890, re_loss=0.0223, conf_loss=0.0000, time=15sec
149
+ [i] iteration=6,996, learning_rate=0.0333, alpha=4.00, loss=0.2721, class_loss=0.0877, p_class_loss=0.0917, re_loss=0.0232, conf_loss=0.0000, time=15sec
150
+ [i] iteration=7,062, learning_rate=0.0326, alpha=4.00, loss=0.2568, class_loss=0.0822, p_class_loss=0.0862, re_loss=0.0221, conf_loss=0.0000, time=15sec
151
+ [i] iteration=7,128, learning_rate=0.0319, alpha=4.00, loss=0.2660, class_loss=0.0868, p_class_loss=0.0903, re_loss=0.0222, conf_loss=0.0000, time=15sec
152
+ [i] iteration=7,194, learning_rate=0.0312, alpha=4.00, loss=0.2583, class_loss=0.0835, p_class_loss=0.0868, re_loss=0.0220, conf_loss=0.0000, time=15sec
153
+ [i] iteration=7,260, learning_rate=0.0306, alpha=4.00, loss=0.2688, class_loss=0.0869, p_class_loss=0.0906, re_loss=0.0228, conf_loss=0.0000, time=15sec
154
+ [i] iteration=7,271, threshold=0.10, train_mIoU=45.85%, best_train_mIoU=46.22%, time=18sec
155
+ [i] iteration=7,326, learning_rate=0.0299, alpha=4.00, loss=0.2663, class_loss=0.0865, p_class_loss=0.0900, re_loss=0.0225, conf_loss=0.0000, time=34sec
156
+ [i] iteration=7,392, learning_rate=0.0292, alpha=4.00, loss=0.2671, class_loss=0.0863, p_class_loss=0.0901, re_loss=0.0227, conf_loss=0.0000, time=15sec
157
+ [i] iteration=7,458, learning_rate=0.0285, alpha=4.00, loss=0.2605, class_loss=0.0839, p_class_loss=0.0877, re_loss=0.0222, conf_loss=0.0000, time=15sec
158
+ [i] iteration=7,524, learning_rate=0.0278, alpha=4.00, loss=0.2510, class_loss=0.0811, p_class_loss=0.0846, re_loss=0.0213, conf_loss=0.0000, time=15sec
159
+ [i] iteration=7,590, learning_rate=0.0271, alpha=4.00, loss=0.2630, class_loss=0.0848, p_class_loss=0.0884, re_loss=0.0224, conf_loss=0.0000, time=15sec
160
+ [i] iteration=7,656, learning_rate=0.0264, alpha=4.00, loss=0.2555, class_loss=0.0814, p_class_loss=0.0850, re_loss=0.0223, conf_loss=0.0000, time=15sec
161
+ [i] iteration=7,722, learning_rate=0.0257, alpha=4.00, loss=0.2520, class_loss=0.0803, p_class_loss=0.0842, re_loss=0.0219, conf_loss=0.0000, time=15sec
162
+ [i] iteration=7,788, learning_rate=0.0250, alpha=4.00, loss=0.2517, class_loss=0.0800, p_class_loss=0.0837, re_loss=0.0220, conf_loss=0.0000, time=15sec
163
+ [i] iteration=7,854, learning_rate=0.0243, alpha=4.00, loss=0.2637, class_loss=0.0844, p_class_loss=0.0883, re_loss=0.0227, conf_loss=0.0000, time=15sec
164
+ [i] iteration=7,920, learning_rate=0.0236, alpha=4.00, loss=0.2664, class_loss=0.0849, p_class_loss=0.0884, re_loss=0.0233, conf_loss=0.0000, time=15sec
165
+ [i] save model
166
+ [i] iteration=7,932, threshold=0.10, train_mIoU=46.27%, best_train_mIoU=46.27%, time=18sec
167
+ [i] iteration=7,986, learning_rate=0.0229, alpha=4.00, loss=0.2546, class_loss=0.0811, p_class_loss=0.0846, re_loss=0.0222, conf_loss=0.0000, time=34sec
168
+ [i] iteration=8,052, learning_rate=0.0222, alpha=4.00, loss=0.2614, class_loss=0.0840, p_class_loss=0.0878, re_loss=0.0224, conf_loss=0.0000, time=15sec
169
+ [i] iteration=8,118, learning_rate=0.0215, alpha=4.00, loss=0.2555, class_loss=0.0818, p_class_loss=0.0855, re_loss=0.0220, conf_loss=0.0000, time=15sec
170
+ [i] iteration=8,184, learning_rate=0.0208, alpha=4.00, loss=0.2465, class_loss=0.0785, p_class_loss=0.0823, re_loss=0.0214, conf_loss=0.0000, time=15sec
171
+ [i] iteration=8,250, learning_rate=0.0201, alpha=4.00, loss=0.2620, class_loss=0.0845, p_class_loss=0.0882, re_loss=0.0223, conf_loss=0.0000, time=15sec
172
+ [i] iteration=8,316, learning_rate=0.0194, alpha=4.00, loss=0.2562, class_loss=0.0832, p_class_loss=0.0868, re_loss=0.0216, conf_loss=0.0000, time=15sec
173
+ [i] iteration=8,382, learning_rate=0.0186, alpha=4.00, loss=0.2568, class_loss=0.0826, p_class_loss=0.0861, re_loss=0.0220, conf_loss=0.0000, time=15sec
174
+ [i] iteration=8,448, learning_rate=0.0179, alpha=4.00, loss=0.2609, class_loss=0.0831, p_class_loss=0.0871, re_loss=0.0227, conf_loss=0.0000, time=15sec
175
+ [i] iteration=8,514, learning_rate=0.0172, alpha=4.00, loss=0.2572, class_loss=0.0822, p_class_loss=0.0862, re_loss=0.0222, conf_loss=0.0000, time=15sec
176
+ [i] iteration=8,580, learning_rate=0.0165, alpha=4.00, loss=0.2527, class_loss=0.0802, p_class_loss=0.0843, re_loss=0.0220, conf_loss=0.0000, time=15sec
177
+ [i] save model
178
+ [i] iteration=8,593, threshold=0.10, train_mIoU=46.42%, best_train_mIoU=46.42%, time=18sec
179
+ [i] iteration=8,646, learning_rate=0.0157, alpha=4.00, loss=0.2529, class_loss=0.0817, p_class_loss=0.0854, re_loss=0.0215, conf_loss=0.0000, time=34sec
180
+ [i] iteration=8,712, learning_rate=0.0150, alpha=4.00, loss=0.2517, class_loss=0.0801, p_class_loss=0.0839, re_loss=0.0219, conf_loss=0.0000, time=15sec
181
+ [i] iteration=8,778, learning_rate=0.0143, alpha=4.00, loss=0.2487, class_loss=0.0797, p_class_loss=0.0836, re_loss=0.0214, conf_loss=0.0000, time=15sec
182
+ [i] iteration=8,844, learning_rate=0.0135, alpha=4.00, loss=0.2572, class_loss=0.0829, p_class_loss=0.0869, re_loss=0.0218, conf_loss=0.0000, time=15sec
183
+ [i] iteration=8,910, learning_rate=0.0128, alpha=4.00, loss=0.2498, class_loss=0.0794, p_class_loss=0.0829, re_loss=0.0219, conf_loss=0.0000, time=15sec
184
+ [i] iteration=8,976, learning_rate=0.0120, alpha=4.00, loss=0.2437, class_loss=0.0769, p_class_loss=0.0807, re_loss=0.0215, conf_loss=0.0000, time=15sec
185
+ [i] iteration=9,042, learning_rate=0.0112, alpha=4.00, loss=0.2490, class_loss=0.0789, p_class_loss=0.0825, re_loss=0.0219, conf_loss=0.0000, time=15sec
186
+ [i] iteration=9,108, learning_rate=0.0105, alpha=4.00, loss=0.2652, class_loss=0.0854, p_class_loss=0.0893, re_loss=0.0226, conf_loss=0.0000, time=15sec
187
+ [i] iteration=9,174, learning_rate=0.0097, alpha=4.00, loss=0.2582, class_loss=0.0836, p_class_loss=0.0872, re_loss=0.0219, conf_loss=0.0000, time=15sec
188
+ [i] iteration=9,240, learning_rate=0.0089, alpha=4.00, loss=0.2455, class_loss=0.0778, p_class_loss=0.0813, re_loss=0.0216, conf_loss=0.0000, time=15sec
189
+ [i] iteration=9,254, threshold=0.10, train_mIoU=45.94%, best_train_mIoU=46.42%, time=17sec
190
+ [i] iteration=9,306, learning_rate=0.0081, alpha=4.00, loss=0.2416, class_loss=0.0761, p_class_loss=0.0797, re_loss=0.0214, conf_loss=0.0000, time=34sec
191
+ [i] iteration=9,372, learning_rate=0.0073, alpha=4.00, loss=0.2461, class_loss=0.0781, p_class_loss=0.0819, re_loss=0.0215, conf_loss=0.0000, time=15sec
192
+ [i] iteration=9,438, learning_rate=0.0065, alpha=4.00, loss=0.2505, class_loss=0.0789, p_class_loss=0.0825, re_loss=0.0223, conf_loss=0.0000, time=15sec
193
+ [i] iteration=9,504, learning_rate=0.0057, alpha=4.00, loss=0.2517, class_loss=0.0796, p_class_loss=0.0837, re_loss=0.0221, conf_loss=0.0000, time=15sec
194
+ [i] iteration=9,570, learning_rate=0.0049, alpha=4.00, loss=0.2550, class_loss=0.0811, p_class_loss=0.0850, re_loss=0.0222, conf_loss=0.0000, time=15sec
195
+ [i] iteration=9,636, learning_rate=0.0040, alpha=4.00, loss=0.2542, class_loss=0.0802, p_class_loss=0.0843, re_loss=0.0224, conf_loss=0.0000, time=15sec
196
+ [i] iteration=9,702, learning_rate=0.0032, alpha=4.00, loss=0.2487, class_loss=0.0785, p_class_loss=0.0823, re_loss=0.0220, conf_loss=0.0000, time=15sec
197
+ [i] iteration=9,768, learning_rate=0.0023, alpha=4.00, loss=0.2435, class_loss=0.0775, p_class_loss=0.0807, re_loss=0.0213, conf_loss=0.0000, time=15sec
198
+ [i] iteration=9,834, learning_rate=0.0013, alpha=4.00, loss=0.2416, class_loss=0.0764, p_class_loss=0.0797, re_loss=0.0214, conf_loss=0.0000, time=15sec
199
+ [i] iteration=9,900, learning_rate=0.0003, alpha=4.00, loss=0.2595, class_loss=0.0842, p_class_loss=0.0882, re_loss=0.0218, conf_loss=0.0000, time=15sec
200
+ [i] iteration=9,915, threshold=0.10, train_mIoU=46.11%, best_train_mIoU=46.42%, time=18sec
experiments/models/DeepLabv3+@ResNet-50@Fix@GN.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e36eaafb77c30fc0653ac357e2ec7264b35c99bcf31171ecf0c73a1377f0ea65
3
+ size 161788776
experiments/tensorboards/DeepLabv3+@ResNet-50@Fix@GN/events.out.tfevents.1732202846.fa3f79e7e409.152433.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d2d9fc914d48debec185ca787a5b5aff7be9ffdcbdc3e22b7c9de152421188b
3
+ size 1156
experiments/tensorboards/DeepLabv3+@ResNet-50@Fix@GN/events.out.tfevents.1732203578.fa3f79e7e409.155686.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a46359d5c127ecac0a34e80dd5a3be0396483f21f85504611616fa4849fbb94
3
+ size 31059702
requirements.txt ADDED
Binary file (276 Bytes). View file