WSSS_ResNet50 / core /networks.py
kittendev's picture
Update core/networks.py
42c5722 verified
raw
history blame
12.9 kB
# Copyright (C) 2021 * Ltd. All rights reserved.
# author : Sanghyeon Jo <josanghyeokn@gmail.com>
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
import torch.utils.model_zoo as model_zoo
from .arch_resnet import resnet
from .arch_resnest import resnest
from .abc_modules import ABC_Model
from .deeplab_utils import ASPP, Decoder
from .aff_utils import PathIndex
from .puzzle_utils import tile_features, merge_features
from tools.ai.torch_utils import resize_for_tensors
#######################################################################
# Normalization
#######################################################################
from .sync_batchnorm.batchnorm import SynchronizedBatchNorm2d
class FixedBatchNorm(nn.BatchNorm2d):
def forward(self, x):
return F.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, training=False, eps=self.eps)
def group_norm(features):
return nn.GroupNorm(4, features)
#######################################################################
class Backbone(nn.Module, ABC_Model):
def __init__(self, model_name, num_classes=20, mode='fix', segmentation=False):
super().__init__()
self.mode = mode
if self.mode == 'fix':
self.norm_fn = FixedBatchNorm
else:
self.norm_fn = nn.BatchNorm2d
if 'resnet' in model_name:
self.model = resnet.ResNet(resnet.Bottleneck, resnet.layers_dic[model_name], strides=(2, 2, 2, 1),
batch_norm_fn=self.norm_fn)
state_dict = model_zoo.load_url(resnet.urls_dic[model_name])
state_dict.pop('fc.weight')
state_dict.pop('fc.bias')
self.model.load_state_dict(state_dict)
else:
if segmentation:
dilation, dilated = 4, True
else:
dilation, dilated = 2, False
self.model = eval("resnest." + model_name)(pretrained=True, dilated=dilated, dilation=dilation,
norm_layer=self.norm_fn)
del self.model.avgpool
del self.model.fc
self.stage1 = nn.Sequential(self.model.conv1,
self.model.bn1,
self.model.relu,
self.model.maxpool)
self.stage2 = nn.Sequential(self.model.layer1)
self.stage3 = nn.Sequential(self.model.layer2)
self.stage4 = nn.Sequential(self.model.layer3)
self.stage5 = nn.Sequential(self.model.layer4)
class Classifier(Backbone):
def __init__(self, model_name, state_path, num_classes=20, mode='fix'):
super().__init__(model_name, state_path, num_classes, mode)
self.classifier = nn.Conv2d(2048, num_classes, 1, bias=False)
self.num_classes = num_classes
self.initialize([self.classifier])
def forward(self, x, with_cam=False):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.stage5(x)
if with_cam:
features = self.classifier(x)
logits = self.global_average_pooling_2d(features)
return logits, features
else:
x = self.global_average_pooling_2d(x, keepdims=True)
logits = self.classifier(x).view(-1, self.num_classes)
return logits
class Classifier_For_Positive_Pooling(Backbone):
def __init__(self, model_name, num_classes=20, mode='fix'):
super().__init__(model_name, num_classes, mode)
self.classifier = nn.Conv2d(2048, num_classes, 1, bias=False)
self.num_classes = num_classes
self.initialize([self.classifier])
def forward(self, x, with_cam=False):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.stage5(x)
if with_cam:
features = self.classifier(x)
logits = self.global_average_pooling_2d(features)
return logits, features
else:
x = self.global_average_pooling_2d(x, keepdims=True)
logits = self.classifier(x).view(-1, self.num_classes)
return logits
class Classifier_For_Puzzle(Classifier):
def __init__(self, model_name, num_classes=20, mode='fix'):
super().__init__(model_name, num_classes, mode)
def forward(self, x, num_pieces=1, level=-1):
batch_size = x.size()[0]
output_dic = {}
layers = [self.stage1, self.stage2, self.stage3, self.stage4, self.stage5, self.classifier]
for l, layer in enumerate(layers):
l += 1
if level == l:
x = tile_features(x, num_pieces)
x = layer(x)
output_dic['stage%d'%l] = x
output_dic['logits'] = self.global_average_pooling_2d(output_dic['stage6'])
for l in range(len(layers)):
l += 1
if l >= level:
output_dic['stage%d'%l] = merge_features(output_dic['stage%d'%l], num_pieces, batch_size)
if level is not None:
output_dic['merged_logits'] = self.global_average_pooling_2d(output_dic['stage6'])
return output_dic
class AffinityNet(Backbone):
def __init__(self, model_name, path_index=None):
super().__init__(model_name, None, 'fix')
if '50' in model_name:
fc_edge1_features = 64
else:
fc_edge1_features = 128
self.fc_edge1 = nn.Sequential(
nn.Conv2d(fc_edge1_features, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.ReLU(inplace=True),
)
self.fc_edge2 = nn.Sequential(
nn.Conv2d(256, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.ReLU(inplace=True),
)
self.fc_edge3 = nn.Sequential(
nn.Conv2d(512, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.ReLU(inplace=True),
)
self.fc_edge4 = nn.Sequential(
nn.Conv2d(1024, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False),
nn.ReLU(inplace=True),
)
self.fc_edge5 = nn.Sequential(
nn.Conv2d(2048, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False),
nn.ReLU(inplace=True),
)
self.fc_edge6 = nn.Conv2d(160, 1, 1, bias=True)
self.backbone = nn.ModuleList([self.stage1, self.stage2, self.stage3, self.stage4, self.stage5])
self.edge_layers = nn.ModuleList([self.fc_edge1, self.fc_edge2, self.fc_edge3, self.fc_edge4, self.fc_edge5, self.fc_edge6])
if path_index is not None:
self.path_index = path_index
self.n_path_lengths = len(self.path_index.path_indices)
for i, pi in enumerate(self.path_index.path_indices):
self.register_buffer("path_indices_" + str(i), torch.from_numpy(pi))
def train(self, mode=True):
super().train(mode)
self.backbone.eval()
def forward(self, x, with_affinity=False):
x1 = self.stage1(x).detach()
x2 = self.stage2(x1).detach()
x3 = self.stage3(x2).detach()
x4 = self.stage4(x3).detach()
x5 = self.stage5(x4).detach()
edge1 = self.fc_edge1(x1)
edge2 = self.fc_edge2(x2)
edge3 = self.fc_edge3(x3)[..., :edge2.size(2), :edge2.size(3)]
edge4 = self.fc_edge4(x4)[..., :edge2.size(2), :edge2.size(3)]
edge5 = self.fc_edge5(x5)[..., :edge2.size(2), :edge2.size(3)]
edge = self.fc_edge6(torch.cat([edge1, edge2, edge3, edge4, edge5], dim=1))
if with_affinity:
return edge, self.to_affinity(torch.sigmoid(edge))
else:
return edge
def get_edge(self, x, image_size=512, stride=4):
feat_size = (x.size(2)-1)//stride+1, (x.size(3)-1)//stride+1
x = F.pad(x, [0, image_size-x.size(3), 0, image_size-x.size(2)])
edge_out = self.forward(x)
edge_out = edge_out[..., :feat_size[0], :feat_size[1]]
edge_out = torch.sigmoid(edge_out[0]/2 + edge_out[1].flip(-1)/2)
return edge_out
"""
aff = self.to_affinity(torch.sigmoid(edge_out))
pos_aff_loss = (-1) * torch.log(aff + 1e-5)
neg_aff_loss = (-1) * torch.log(1. + 1e-5 - aff)
"""
def to_affinity(self, edge):
aff_list = []
edge = edge.view(edge.size(0), -1)
for i in range(self.n_path_lengths):
ind = self._buffers["path_indices_" + str(i)]
ind_flat = ind.view(-1)
dist = torch.index_select(edge, dim=-1, index=ind_flat)
dist = dist.view(dist.size(0), ind.size(0), ind.size(1), ind.size(2))
aff = torch.squeeze(1 - F.max_pool2d(dist, (dist.size(2), 1)), dim=2)
aff_list.append(aff)
aff_cat = torch.cat(aff_list, dim=1)
return aff_cat
class DeepLabv3_Plus(Backbone):
def __init__(self, model_name, num_classes=21, mode='fix', use_group_norm=False):
super().__init__(model_name, num_classes, mode, segmentation=False)
if use_group_norm:
norm_fn_for_extra_modules = group_norm
else:
norm_fn_for_extra_modules = self.norm_fn
self.aspp = ASPP(output_stride=16, norm_fn=norm_fn_for_extra_modules)
self.decoder = Decoder(num_classes, 256, norm_fn_for_extra_modules)
def forward(self, x, with_cam=False):
inputs = x
x = self.stage1(x)
x = self.stage2(x)
x_low_level = x
x = self.stage3(x)
x = self.stage4(x)
x = self.stage5(x)
x = self.aspp(x)
x = self.decoder(x, x_low_level)
x = resize_for_tensors(x, inputs.size()[2:], align_corners=True)
return x
class Seg_Model(Backbone):
def __init__(self, model_name, num_classes=21):
super().__init__(model_name, num_classes, mode='fix', segmentation=False)
self.classifier = nn.Conv2d(2048, num_classes, 1, bias=False)
def forward(self, inputs):
x = self.stage1(inputs)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.stage5(x)
logits = self.classifier(x)
# logits = resize_for_tensors(logits, inputs.size()[2:], align_corners=False)
return logits
class CSeg_Model(Backbone):
def __init__(self, model_name, num_classes=21):
super().__init__(model_name, num_classes, 'fix')
if '50' in model_name:
fc_edge1_features = 64
else:
fc_edge1_features = 128
self.fc_edge1 = nn.Sequential(
nn.Conv2d(fc_edge1_features, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.ReLU(inplace=True),
)
self.fc_edge2 = nn.Sequential(
nn.Conv2d(256, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.ReLU(inplace=True),
)
self.fc_edge3 = nn.Sequential(
nn.Conv2d(512, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.ReLU(inplace=True),
)
self.fc_edge4 = nn.Sequential(
nn.Conv2d(1024, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False),
nn.ReLU(inplace=True),
)
self.fc_edge5 = nn.Sequential(
nn.Conv2d(2048, 32, 1, bias=False),
nn.GroupNorm(4, 32),
nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False),
nn.ReLU(inplace=True),
)
self.fc_edge6 = nn.Conv2d(160, num_classes, 1, bias=True)
def forward(self, x):
x1 = self.stage1(x)
x2 = self.stage2(x1)
x3 = self.stage3(x2)
x4 = self.stage4(x3)
x5 = self.stage5(x4)
edge1 = self.fc_edge1(x1)
edge2 = self.fc_edge2(x2)
edge3 = self.fc_edge3(x3)[..., :edge2.size(2), :edge2.size(3)]
edge4 = self.fc_edge4(x4)[..., :edge2.size(2), :edge2.size(3)]
edge5 = self.fc_edge5(x5)[..., :edge2.size(2), :edge2.size(3)]
logits = self.fc_edge6(torch.cat([edge1, edge2, edge3, edge4, edge5], dim=1))
# logits = resize_for_tensors(logits, x.size()[2:], align_corners=True)
return logits