Spaces:
Sleeping
Sleeping
# Copyright (C) 2021 * Ltd. All rights reserved. | |
# author : Sanghyeon Jo <josanghyeokn@gmail.com> | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class ASPPModule(nn.Module): | |
def __init__(self, inplanes, planes, kernel_size, padding, dilation, norm_fn=None): | |
super().__init__() | |
self.atrous_conv = nn.Conv2d(inplanes, planes, kernel_size=kernel_size, stride=1, padding=padding, dilation=dilation, bias=False) | |
self.bn = norm_fn(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.initialize([self.atrous_conv, self.bn]) | |
def forward(self, x): | |
x = self.atrous_conv(x) | |
x = self.bn(x) | |
return self.relu(x) | |
def initialize(self, modules): | |
for m in modules: | |
if isinstance(m, nn.Conv2d): | |
torch.nn.init.kaiming_normal_(m.weight) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
class ASPP(nn.Module): | |
def __init__(self, output_stride, norm_fn): | |
super().__init__() | |
inplanes = 2048 | |
if output_stride == 16: | |
dilations = [1, 6, 12, 18] | |
elif output_stride == 8: | |
dilations = [1, 12, 24, 36] | |
self.aspp1 = ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0], norm_fn=norm_fn) | |
self.aspp2 = ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1], norm_fn=norm_fn) | |
self.aspp3 = ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2], norm_fn=norm_fn) | |
self.aspp4 = ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3], norm_fn=norm_fn) | |
self.global_avg_pool = nn.Sequential( | |
nn.AdaptiveAvgPool2d((1, 1)), | |
nn.Conv2d(inplanes, 256, 1, stride=1, bias=False), | |
norm_fn(256), | |
nn.ReLU(inplace=True), | |
) | |
self.conv1 = nn.Conv2d(1280, 256, 1, bias=False) | |
self.bn1 = norm_fn(256) | |
self.relu = nn.ReLU(inplace=True) | |
self.dropout = nn.Dropout(0.5) | |
self.initialize([self.conv1, self.bn1] + list(self.global_avg_pool.modules())) | |
def forward(self, x): | |
x1 = self.aspp1(x) | |
x2 = self.aspp2(x) | |
x3 = self.aspp3(x) | |
x4 = self.aspp4(x) | |
x5 = self.global_avg_pool(x) | |
x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True) | |
x = torch.cat((x1, x2, x3, x4, x5), dim=1) | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.dropout(x) | |
return x | |
def initialize(self, modules): | |
for m in modules: | |
if isinstance(m, nn.Conv2d): | |
torch.nn.init.kaiming_normal_(m.weight) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
class Decoder(nn.Module): | |
def __init__(self, num_classes, low_level_inplanes, norm_fn): | |
super().__init__() | |
self.conv1 = nn.Conv2d(low_level_inplanes, 48, 1, bias=False) | |
self.bn1 = norm_fn(48) | |
self.relu = nn.ReLU(inplace=True) | |
self.classifier = nn.Sequential( | |
nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
norm_fn(256), | |
nn.ReLU(inplace=True), | |
nn.Dropout(0.5), | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
norm_fn(256), | |
nn.ReLU(inplace=True), | |
nn.Dropout(0.1), | |
nn.Conv2d(256, num_classes, kernel_size=1, stride=1) | |
) | |
self.initialize([self.conv1, self.bn1] + list(self.classifier.modules())) | |
def forward(self, x, x_low_level): | |
x_low_level = self.conv1(x_low_level) | |
x_low_level = self.bn1(x_low_level) | |
x_low_level = self.relu(x_low_level) | |
x = F.interpolate(x, size=x_low_level.size()[2:], mode='bilinear', align_corners=True) | |
x = torch.cat((x, x_low_level), dim=1) | |
x = self.classifier(x) | |
return x | |
def initialize(self, modules): | |
for m in modules: | |
if isinstance(m, nn.Conv2d): | |
torch.nn.init.kaiming_normal_(m.weight) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() |