Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +31 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the text classification model pipeline
|
5 |
+
classifier = pipeline("text-classification", model='kithangw/phishing_email_detection')
|
6 |
+
|
7 |
+
# Streamlit application title
|
8 |
+
st.title("Please enter a suspicious email")
|
9 |
+
|
10 |
+
# Text input for user to enter the email to classify
|
11 |
+
email = st.text_area("Enter the email to classify", "")
|
12 |
+
|
13 |
+
# Perform text classification when the user clicks the "Classify" button
|
14 |
+
if st.button("Classify"):
|
15 |
+
if email: # Check if email is not empty
|
16 |
+
# Perform text classification on the input email
|
17 |
+
results = classifier(email)
|
18 |
+
|
19 |
+
# The results variable contains a list with one item, which is a dictionary.
|
20 |
+
# The dictionary has 'label' and 'score' as keys.
|
21 |
+
result = results[0]
|
22 |
+
label = result['label']
|
23 |
+
score = round(result['score'] * 100, 2) # Convert score to percentage
|
24 |
+
|
25 |
+
# Check the label and print out the corresponding message
|
26 |
+
if label == "LABEL_1": # Assuming LABEL_1 indicates phishing
|
27 |
+
st.write(f"The email you entered is {score}% likely to be a phishing email.")
|
28 |
+
else: # Assuming LABEL_0 indicates not phishing
|
29 |
+
st.write(f"The email you entered is {score}% likely to be not a phishing email.")
|
30 |
+
else:
|
31 |
+
st.error("Please enter an email to classify.")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
spaces
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
evaluate
|
5 |
+
transformers[torch]
|