kisa-misa kadirnar commited on
Commit
b420619
·
0 Parent(s):

Duplicate from kadirnar/yolox

Browse files

Co-authored-by: Kadir Nar <kadirnar@users.noreply.huggingface.co>

.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: YOLOX is a high-performance anchor-free YOLO.
3
+ emoji: 🌖
4
+ colorFrom: red
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 3.15.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ tags:
12
+ - making-demos
13
+ duplicated_from: kadirnar/yolox
14
+ ---
15
+
16
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ os.system("pip -qq install yoloxdetect==0.0.7")
4
+ import torch
5
+ from yoloxdetect import YoloxDetector
6
+
7
+ # Images
8
+ torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
9
+ torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
10
+ torch.hub.download_url_to_file('https://raw.githubusercontent.com/Megvii-BaseDetection/YOLOX/main/assets/dog.jpg', 'dog.jpg')
11
+
12
+ def yolox_inference(
13
+ image_path: gr.inputs.Image = None,
14
+ model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1',
15
+ config_path: gr.inputs.Textbox = 'configs.yolox_s',
16
+ image_size: gr.inputs.Slider = 640
17
+ ):
18
+ """
19
+ YOLOX inference function
20
+ Args:
21
+ image: Input image
22
+ model_path: Path to the model
23
+ config_path: Path to the config file
24
+ image_size: Image size
25
+ Returns:
26
+ Rendered image
27
+ """
28
+
29
+ model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True)
30
+ pred = model.predict(image_path=image_path, image_size=image_size)
31
+ return pred
32
+
33
+
34
+ inputs = [
35
+ gr.inputs.Image(type="filepath", label="Input Image"),
36
+ gr.inputs.Dropdown(
37
+ label="Model Path",
38
+ choices=[
39
+ "kadirnar/yolox_s-v0.1.1",
40
+ "kadirnar/yolox_m-v0.1.1",
41
+ "kadirnar/yolox_tiny-v0.1.1",
42
+ ],
43
+ default="kadirnar/yolox_s-v0.1.1",
44
+ ),
45
+ gr.inputs.Dropdown(
46
+ label="Config Path",
47
+ choices=[
48
+ "configs.yolox_s",
49
+ "configs.yolox_m",
50
+ "configs.yolox_tiny",
51
+ ],
52
+ default="configs.yolox_s",
53
+ ),
54
+ gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
55
+ ]
56
+
57
+ outputs = gr.outputs.Image(type="filepath", label="Output Image")
58
+ title = "YOLOX is a high-performance anchor-free YOLO."
59
+
60
+ examples = [
61
+ ["small-vehicles1.jpeg", "kadirnar/yolox_m-v0.1.1", "configs.yolox_m", 640],
62
+ ["zidane.jpg", "kadirnar/yolox_s-v0.1.1", "configs.yolox_s", 640],
63
+ ["dog.jpg", "kadirnar/yolox_tiny-v0.1.1", "configs.yolox_tiny", 640],
64
+ ]
65
+
66
+ demo_app = gr.Interface(
67
+ fn=yolox_inference,
68
+ inputs=inputs,
69
+ outputs=outputs,
70
+ title=title,
71
+ examples=examples,
72
+ cache_examples=True,
73
+ theme='huggingface',
74
+ )
75
+ demo_app.launch(debug=True, enable_queue=True)
configs/__init__.py ADDED
File without changes
configs/yolov3.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # Copyright (c) Megvii, Inc. and its affiliates.
4
+
5
+ import os
6
+
7
+ import torch.nn as nn
8
+
9
+ from yolox.exp import Exp as MyExp
10
+
11
+
12
+ class Exp(MyExp):
13
+ def __init__(self):
14
+ super(Exp, self).__init__()
15
+ self.depth = 1.0
16
+ self.width = 1.0
17
+ self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
18
+
19
+ def get_model(self, sublinear=False):
20
+ def init_yolo(M):
21
+ for m in M.modules():
22
+ if isinstance(m, nn.BatchNorm2d):
23
+ m.eps = 1e-3
24
+ m.momentum = 0.03
25
+ if "model" not in self.__dict__:
26
+ from yolox.models import YOLOX, YOLOFPN, YOLOXHead
27
+ backbone = YOLOFPN()
28
+ head = YOLOXHead(self.num_classes, self.width, in_channels=[128, 256, 512], act="lrelu")
29
+ self.model = YOLOX(backbone, head)
30
+ self.model.apply(init_yolo)
31
+ self.model.head.initialize_biases(1e-2)
32
+
33
+ return self.model
configs/yolox_l.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # Copyright (c) Megvii, Inc. and its affiliates.
4
+
5
+ import os
6
+
7
+ from yolox.exp import Exp as MyExp
8
+
9
+
10
+ class Exp(MyExp):
11
+ def __init__(self):
12
+ super(Exp, self).__init__()
13
+ self.depth = 1.0
14
+ self.width = 1.0
15
+ self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
configs/yolox_m.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # Copyright (c) Megvii, Inc. and its affiliates.
4
+
5
+ import os
6
+
7
+ from yolox.exp import Exp as MyExp
8
+
9
+
10
+ class Exp(MyExp):
11
+ def __init__(self):
12
+ super(Exp, self).__init__()
13
+ self.depth = 0.67
14
+ self.width = 0.75
15
+ self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
configs/yolox_nano.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # Copyright (c) Megvii, Inc. and its affiliates.
4
+
5
+ import os
6
+
7
+ import torch.nn as nn
8
+
9
+ from yolox.exp import Exp as MyExp
10
+
11
+
12
+ class Exp(MyExp):
13
+ def __init__(self):
14
+ super(Exp, self).__init__()
15
+ self.depth = 0.33
16
+ self.width = 0.25
17
+ self.input_size = (416, 416)
18
+ self.random_size = (10, 20)
19
+ self.mosaic_scale = (0.5, 1.5)
20
+ self.test_size = (416, 416)
21
+ self.mosaic_prob = 0.5
22
+ self.enable_mixup = False
23
+ self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
24
+
25
+ def get_model(self, sublinear=False):
26
+
27
+ def init_yolo(M):
28
+ for m in M.modules():
29
+ if isinstance(m, nn.BatchNorm2d):
30
+ m.eps = 1e-3
31
+ m.momentum = 0.03
32
+ if "model" not in self.__dict__:
33
+ from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead
34
+ in_channels = [256, 512, 1024]
35
+ # NANO model use depthwise = True, which is main difference.
36
+ backbone = YOLOPAFPN(
37
+ self.depth, self.width, in_channels=in_channels,
38
+ act=self.act, depthwise=True,
39
+ )
40
+ head = YOLOXHead(
41
+ self.num_classes, self.width, in_channels=in_channels,
42
+ act=self.act, depthwise=True
43
+ )
44
+ self.model = YOLOX(backbone, head)
45
+
46
+ self.model.apply(init_yolo)
47
+ self.model.head.initialize_biases(1e-2)
48
+ return self.model
configs/yolox_s.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # Copyright (c) Megvii, Inc. and its affiliates.
4
+
5
+ import os
6
+
7
+ from yolox.exp import Exp as MyExp
8
+
9
+
10
+ class Exp(MyExp):
11
+ def __init__(self):
12
+ super(Exp, self).__init__()
13
+ self.depth = 0.33
14
+ self.width = 0.50
15
+ self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
configs/yolox_tiny.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # Copyright (c) Megvii, Inc. and its affiliates.
4
+
5
+ import os
6
+
7
+ from yolox.exp import Exp as MyExp
8
+
9
+
10
+ class Exp(MyExp):
11
+ def __init__(self):
12
+ super(Exp, self).__init__()
13
+ self.depth = 0.33
14
+ self.width = 0.375
15
+ self.input_size = (416, 416)
16
+ self.mosaic_scale = (0.5, 1.5)
17
+ self.random_size = (10, 20)
18
+ self.test_size = (416, 416)
19
+ self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
20
+ self.enable_mixup = False
configs/yolox_x.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding:utf-8 -*-
3
+ # Copyright (c) Megvii, Inc. and its affiliates.
4
+
5
+ import os
6
+
7
+ from yolox.exp import Exp as MyExp
8
+
9
+
10
+ class Exp(MyExp):
11
+ def __init__(self):
12
+ super(Exp, self).__init__()
13
+ self.depth = 1.33
14
+ self.width = 1.25
15
+ self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ torch