kisa-misa's picture
Upload 213 files
2283b14
raw
history blame contribute delete
No virus
25 kB
# Ultralytics YOLO 🚀, GPL-3.0 license
"""
Simple training loop; Boilerplate that could apply to any arbitrary neural network,
"""
import os
import subprocess
import time
from collections import defaultdict
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from omegaconf import OmegaConf # noqa
from omegaconf import open_dict
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import lr_scheduler
from tqdm import tqdm
import ultralytics.yolo.utils as utils
from ultralytics import __version__
from ultralytics.nn.tasks import attempt_load_one_weight
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.utils import (DEFAULT_CONFIG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr,
yaml_save)
from ultralytics.yolo.utils.autobatch import check_train_batch_size
from ultralytics.yolo.utils.checks import check_file, print_args
from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.yolo.utils.files import get_latest_run, increment_path
from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer
class BaseTrainer:
"""
BaseTrainer
> A base class for creating trainers.
Attributes:
args (OmegaConf): Configuration for the trainer.
check_resume (method): Method to check if training should be resumed from a saved checkpoint.
console (logging.Logger): Logger instance.
validator (BaseValidator): Validator instance.
model (nn.Module): Model instance.
callbacks (defaultdict): Dictionary of callbacks.
save_dir (Path): Directory to save results.
wdir (Path): Directory to save weights.
last (Path): Path to last checkpoint.
best (Path): Path to best checkpoint.
batch_size (int): Batch size for training.
epochs (int): Number of epochs to train for.
start_epoch (int): Starting epoch for training.
device (torch.device): Device to use for training.
amp (bool): Flag to enable AMP (Automatic Mixed Precision).
scaler (amp.GradScaler): Gradient scaler for AMP.
data (str): Path to data.
trainset (torch.utils.data.Dataset): Training dataset.
testset (torch.utils.data.Dataset): Testing dataset.
ema (nn.Module): EMA (Exponential Moving Average) of the model.
lf (nn.Module): Loss function.
scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler.
best_fitness (float): The best fitness value achieved.
fitness (float): Current fitness value.
loss (float): Current loss value.
tloss (float): Total loss value.
loss_names (list): List of loss names.
csv (Path): Path to results CSV file.
"""
def __init__(self, config=DEFAULT_CONFIG, overrides=None):
"""
> Initializes the BaseTrainer class.
Args:
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG.
overrides (dict, optional): Configuration overrides. Defaults to None.
"""
if overrides is None:
overrides = {}
self.args = get_config(config, overrides)
self.check_resume()
self.console = LOGGER
self.validator = None
self.model = None
self.callbacks = defaultdict(list)
init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)
# Dirs
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
name = self.args.name or f"{self.args.mode}"
self.save_dir = Path(
self.args.get(
"save_dir",
increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in {-1, 0} else True)))
self.wdir = self.save_dir / 'weights' # weights dir
if RANK in {-1, 0}:
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
with open_dict(self.args):
self.args.save_dir = str(self.save_dir)
yaml_save(self.save_dir / 'args.yaml', OmegaConf.to_container(self.args, resolve=True)) # save run args
self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths
self.batch_size = self.args.batch
self.epochs = self.args.epochs
self.start_epoch = 0
if RANK == -1:
print_args(dict(self.args))
# Device
self.device = utils.torch_utils.select_device(self.args.device, self.batch_size)
self.amp = self.device.type != 'cpu'
self.scaler = amp.GradScaler(enabled=self.amp)
if self.device.type == 'cpu':
self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading
# Model and Dataloaders.
self.model = self.args.model
self.data = self.args.data
if self.data.endswith(".yaml"):
self.data = check_dataset_yaml(self.data)
else:
self.data = check_dataset(self.data)
self.trainset, self.testset = self.get_dataset(self.data)
self.ema = None
# Optimization utils init
self.lf = None
self.scheduler = None
# Epoch level metrics
self.best_fitness = None
self.fitness = None
self.loss = None
self.tloss = None
self.loss_names = ['Loss']
self.csv = self.save_dir / 'results.csv'
self.plot_idx = [0, 1, 2]
# Callbacks
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
if RANK in {0, -1}:
callbacks.add_integration_callbacks(self)
def add_callback(self, event: str, callback):
"""
> Appends the given callback.
"""
self.callbacks[event].append(callback)
def set_callback(self, event: str, callback):
"""
> Overrides the existing callbacks with the given callback.
"""
self.callbacks[event] = [callback]
def run_callbacks(self, event: str):
for callback in self.callbacks.get(event, []):
callback(self)
def train(self):
world_size = torch.cuda.device_count()
if world_size > 1 and "LOCAL_RANK" not in os.environ:
command = generate_ddp_command(world_size, self)
try:
subprocess.run(command)
except Exception as e:
self.console(e)
finally:
ddp_cleanup(command, self)
else:
self._do_train(int(os.getenv("RANK", -1)), world_size)
def _setup_ddp(self, rank, world_size):
# os.environ['MASTER_ADDR'] = 'localhost'
# os.environ['MASTER_PORT'] = '9020'
torch.cuda.set_device(rank)
self.device = torch.device('cuda', rank)
self.console.info(f"DDP settings: RANK {rank}, WORLD_SIZE {world_size}, DEVICE {self.device}")
dist.init_process_group("nccl" if dist.is_nccl_available() else "gloo", rank=rank, world_size=world_size)
def _setup_train(self, rank, world_size):
"""
> Builds dataloaders and optimizer on correct rank process.
"""
# model
self.run_callbacks("on_pretrain_routine_start")
ckpt = self.setup_model()
self.model = self.model.to(self.device)
self.set_model_attributes()
if world_size > 1:
self.model = DDP(self.model, device_ids=[rank])
# Batch size
if self.batch_size == -1:
if RANK == -1: # single-GPU only, estimate best batch size
self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)
else:
SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. '
'Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16')
# Optimizer
self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing
self.args.weight_decay *= self.batch_size * self.accumulate / self.args.nbs # scale weight_decay
self.optimizer = self.build_optimizer(model=self.model,
name=self.args.optimizer,
lr=self.args.lr0,
momentum=self.args.momentum,
decay=self.args.weight_decay)
# Scheduler
if self.args.cos_lr:
self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf']
else:
self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear
self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
self.scheduler.last_epoch = self.start_epoch - 1 # do not move
# dataloaders
batch_size = self.batch_size // world_size if world_size > 1 else self.batch_size
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=rank, mode="train")
if rank in {0, -1}:
self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode="val")
self.validator = self.get_validator()
metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix="val")
self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()?
self.ema = ModelEMA(self.model)
self.resume_training(ckpt)
self.run_callbacks("on_pretrain_routine_end")
def _do_train(self, rank=-1, world_size=1):
if world_size > 1:
self._setup_ddp(rank, world_size)
self._setup_train(rank, world_size)
self.epoch_time = None
self.epoch_time_start = time.time()
self.train_time_start = time.time()
nb = len(self.train_loader) # number of batches
nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations
last_opt_step = -1
self.run_callbacks("on_train_start")
self.log(f"Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n"
f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
f"Logging results to {colorstr('bold', self.save_dir)}\n"
f"Starting training for {self.epochs} epochs...")
if self.args.close_mosaic:
base_idx = (self.epochs - self.args.close_mosaic) * nb
self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
for epoch in range(self.start_epoch, self.epochs):
self.epoch = epoch
self.run_callbacks("on_train_epoch_start")
self.model.train()
if rank != -1:
self.train_loader.sampler.set_epoch(epoch)
pbar = enumerate(self.train_loader)
# Update dataloader attributes (optional)
if epoch == (self.epochs - self.args.close_mosaic):
self.console.info("Closing dataloader mosaic")
if hasattr(self.train_loader.dataset, 'mosaic'):
self.train_loader.dataset.mosaic = False
if hasattr(self.train_loader.dataset, 'close_mosaic'):
self.train_loader.dataset.close_mosaic(hyp=self.args)
if rank in {-1, 0}:
self.console.info(self.progress_string())
pbar = tqdm(enumerate(self.train_loader), total=nb, bar_format=TQDM_BAR_FORMAT)
self.tloss = None
self.optimizer.zero_grad()
for i, batch in pbar:
self.run_callbacks("on_train_batch_start")
# Warmup
ni = i + nb * epoch
if ni <= nw:
xi = [0, nw] # x interp
self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round())
for j, x in enumerate(self.optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(
ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * self.lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])
# Forward
with torch.cuda.amp.autocast(self.amp):
batch = self.preprocess_batch(batch)
preds = self.model(batch["img"])
self.loss, self.loss_items = self.criterion(preds, batch)
if rank != -1:
self.loss *= world_size
self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \
else self.loss_items
# Backward
self.scaler.scale(self.loss).backward()
# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= self.accumulate:
self.optimizer_step()
last_opt_step = ni
# Log
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
if rank in {-1, 0}:
pbar.set_description(
('%11s' * 2 + '%11.4g' * (2 + loss_len)) %
(f'{epoch + 1}/{self.epochs}', mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1]))
self.run_callbacks('on_batch_end')
if self.args.plots and ni in self.plot_idx:
self.plot_training_samples(batch, ni)
self.run_callbacks("on_train_batch_end")
self.lr = {f"lr/pg{ir}": x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.scheduler.step()
self.run_callbacks("on_train_epoch_end")
if rank in {-1, 0}:
# Validation
self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights'])
final_epoch = (epoch + 1 == self.epochs)
if self.args.val or final_epoch:
self.metrics, self.fitness = self.validate()
self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
# Save model
if self.args.save or (epoch + 1 == self.epochs):
self.save_model()
self.run_callbacks('on_model_save')
tnow = time.time()
self.epoch_time = tnow - self.epoch_time_start
self.epoch_time_start = tnow
self.run_callbacks("on_fit_epoch_end")
# TODO: termination condition
if rank in {-1, 0}:
# Do final val with best.pt
self.log(f'\n{epoch - self.start_epoch + 1} epochs completed in '
f'{(time.time() - self.train_time_start) / 3600:.3f} hours.')
self.final_eval()
if self.args.plots:
self.plot_metrics()
self.log(f"Results saved to {colorstr('bold', self.save_dir)}")
self.run_callbacks('on_train_end')
torch.cuda.empty_cache()
self.run_callbacks('teardown')
def save_model(self):
ckpt = {
'epoch': self.epoch,
'best_fitness': self.best_fitness,
'model': deepcopy(de_parallel(self.model)).half(),
'ema': deepcopy(self.ema.ema).half(),
'updates': self.ema.updates,
'optimizer': self.optimizer.state_dict(),
'train_args': self.args,
'date': datetime.now().isoformat(),
'version': __version__}
# Save last, best and delete
torch.save(ckpt, self.last)
if self.best_fitness == self.fitness:
torch.save(ckpt, self.best)
del ckpt
def get_dataset(self, data):
"""
> Get train, val path from data dict if it exists. Returns None if data format is not recognized.
"""
return data["train"], data.get("val") or data.get("test")
def setup_model(self):
"""
> load/create/download model for any task.
"""
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
return
model, weights = self.model, None
ckpt = None
if str(model).endswith(".pt"):
weights, ckpt = attempt_load_one_weight(model)
cfg = ckpt["model"].yaml
else:
cfg = model
self.model = self.get_model(cfg=cfg, weights=weights) # calls Model(cfg, weights)
return ckpt
def optimizer_step(self):
self.scaler.unscale_(self.optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.ema:
self.ema.update(self.model)
def preprocess_batch(self, batch):
"""
> Allows custom preprocessing model inputs and ground truths depending on task type.
"""
return batch
def validate(self):
"""
> Runs validation on test set using self.validator. The returned dict is expected to contain "fitness" key.
"""
metrics = self.validator(self)
fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found
if not self.best_fitness or self.best_fitness < fitness:
self.best_fitness = fitness
return metrics, fitness
def log(self, text, rank=-1):
"""
> Logs the given text to given ranks process if provided, otherwise logs to all ranks.
Args"
text (str): text to log
rank (List[Int]): process rank
"""
if rank in {-1, 0}:
self.console.info(text)
def get_model(self, cfg=None, weights=None, verbose=True):
raise NotImplementedError("This task trainer doesn't support loading cfg files")
def get_validator(self):
raise NotImplementedError("get_validator function not implemented in trainer")
def get_dataloader(self, dataset_path, batch_size=16, rank=0):
"""
> Returns dataloader derived from torch.data.Dataloader.
"""
raise NotImplementedError("get_dataloader function not implemented in trainer")
def criterion(self, preds, batch):
"""
> Returns loss and individual loss items as Tensor.
"""
raise NotImplementedError("criterion function not implemented in trainer")
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor
"""
# Not needed for classification but necessary for segmentation & detection
return {"loss": loss_items} if loss_items is not None else ["loss"]
def set_model_attributes(self):
"""
To set or update model parameters before training.
"""
self.model.names = self.data["names"]
def build_targets(self, preds, targets):
pass
def progress_string(self):
return ""
# TODO: may need to put these following functions into callback
def plot_training_samples(self, batch, ni):
pass
def save_metrics(self, metrics):
keys, vals = list(metrics.keys()), list(metrics.values())
n = len(metrics) + 1 # number of cols
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
with open(self.csv, 'a') as f:
f.write(s + ('%23.5g,' * n % tuple([self.epoch] + vals)).rstrip(',') + '\n')
def plot_metrics(self):
pass
def final_eval(self):
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is self.best:
self.console.info(f'\nValidating {f}...')
self.validator.args.save_json = True
self.metrics = self.validator(model=f)
self.metrics.pop('fitness', None)
self.run_callbacks('on_fit_epoch_end')
def check_resume(self):
resume = self.args.resume
if resume:
last = Path(check_file(resume) if isinstance(resume, str) else get_latest_run())
args_yaml = last.parent.parent / 'args.yaml' # train options yaml
if args_yaml.is_file():
args = get_config(args_yaml) # replace
args.model, resume = str(last), True # reinstate
self.args = args
self.resume = resume
def resume_training(self, ckpt):
if ckpt is None:
return
best_fitness = 0.0
start_epoch = ckpt['epoch'] + 1
if ckpt['optimizer'] is not None:
self.optimizer.load_state_dict(ckpt['optimizer']) # optimizer
best_fitness = ckpt['best_fitness']
if self.ema and ckpt.get('ema'):
self.ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
self.ema.updates = ckpt['updates']
if self.resume:
assert start_epoch > 0, \
f'{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n' \
f"Start a new training without --resume, i.e. 'yolo task=... mode=train model={self.args.model}'"
LOGGER.info(
f'Resuming training from {self.args.model} from epoch {start_epoch} to {self.epochs} total epochs')
if self.epochs < start_epoch:
LOGGER.info(
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs.")
self.epochs += ckpt['epoch'] # finetune additional epochs
self.best_fitness = best_fitness
self.start_epoch = start_epoch
@staticmethod
def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
"""
> Builds an optimizer with the specified parameters and parameter groups.
Args:
model (nn.Module): model to optimize
name (str): name of the optimizer to use
lr (float): learning rate
momentum (float): momentum
decay (float): weight decay
Returns:
optimizer (torch.optim.Optimizer): the built optimizer
"""
g = [], [], [] # optimizer parameter groups
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
for v in model.modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay)
g[2].append(v.bias)
if isinstance(v, bn): # weight (no decay)
g[1].append(v.weight)
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
g[0].append(v.weight)
if name == 'Adam':
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum
elif name == 'AdamW':
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
elif name == 'RMSProp':
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
elif name == 'SGD':
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
else:
raise NotImplementedError(f'Optimizer {name} not implemented.')
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights)
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias")
return optimizer