Spaces:
Build error
Build error
# Ultralytics YOLO π, GPL-3.0 license | |
""" | |
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit | |
Format | `format=argument` | Model | |
--- | --- | --- | |
PyTorch | - | yolov8n.pt | |
TorchScript | `torchscript` | yolov8n.torchscript | |
ONNX | `onnx` | yolov8n.onnx | |
OpenVINO | `openvino` | yolov8n_openvino_model/ | |
TensorRT | `engine` | yolov8n.engine | |
CoreML | `coreml` | yolov8n.mlmodel | |
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ | |
TensorFlow GraphDef | `pb` | yolov8n.pb | |
TensorFlow Lite | `tflite` | yolov8n.tflite | |
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite | |
TensorFlow.js | `tfjs` | yolov8n_web_model/ | |
PaddlePaddle | `paddle` | yolov8n_paddle_model/ | |
Requirements: | |
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU | |
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU | |
Python: | |
from ultralytics import YOLO | |
model = YOLO('yolov8n.yaml') | |
results = model.export(format='onnx') | |
CLI: | |
$ yolo mode=export model=yolov8n.pt format=onnx | |
Inference: | |
$ python detect.py --weights yolov8n.pt # PyTorch | |
yolov8n.torchscript # TorchScript | |
yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
yolov8n_openvino_model # OpenVINO | |
yolov8n.engine # TensorRT | |
yolov8n.mlmodel # CoreML (macOS-only) | |
yolov8n_saved_model # TensorFlow SavedModel | |
yolov8n.pb # TensorFlow GraphDef | |
yolov8n.tflite # TensorFlow Lite | |
yolov8n_edgetpu.tflite # TensorFlow Edge TPU | |
yolov8n_paddle_model # PaddlePaddle | |
TensorFlow.js: | |
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example | |
$ npm install | |
$ ln -s ../../yolov5/yolov8n_web_model public/yolov8n_web_model | |
$ npm start | |
""" | |
import contextlib | |
import json | |
import os | |
import platform | |
import re | |
import subprocess | |
import time | |
import warnings | |
from collections import defaultdict | |
from copy import deepcopy | |
from pathlib import Path | |
import hydra | |
import numpy as np | |
import pandas as pd | |
import torch | |
import ultralytics | |
from ultralytics.nn.modules import Detect, Segment | |
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel | |
from ultralytics.yolo.configs import get_config | |
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages | |
from ultralytics.yolo.data.utils import check_dataset | |
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, callbacks, colorstr, get_default_args, yaml_save | |
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml | |
from ultralytics.yolo.utils.files import file_size | |
from ultralytics.yolo.utils.ops import Profile | |
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, select_device, smart_inference_mode | |
MACOS = platform.system() == 'Darwin' # macOS environment | |
def export_formats(): | |
# YOLOv5 export formats | |
x = [ | |
['PyTorch', '-', '.pt', True, True], | |
['TorchScript', 'torchscript', '.torchscript', True, True], | |
['ONNX', 'onnx', '.onnx', True, True], | |
['OpenVINO', 'openvino', '_openvino_model', True, False], | |
['TensorRT', 'engine', '.engine', False, True], | |
['CoreML', 'coreml', '.mlmodel', True, False], | |
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True], | |
['TensorFlow GraphDef', 'pb', '.pb', True, True], | |
['TensorFlow Lite', 'tflite', '.tflite', True, False], | |
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False], | |
['TensorFlow.js', 'tfjs', '_web_model', False, False], | |
['PaddlePaddle', 'paddle', '_paddle_model', True, True],] | |
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU']) | |
def try_export(inner_func): | |
# YOLOv5 export decorator, i..e @try_export | |
inner_args = get_default_args(inner_func) | |
def outer_func(*args, **kwargs): | |
prefix = inner_args['prefix'] | |
try: | |
with Profile() as dt: | |
f, model = inner_func(*args, **kwargs) | |
LOGGER.info(f'{prefix} export success β {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)') | |
return f, model | |
except Exception as e: | |
LOGGER.info(f'{prefix} export failure β {dt.t:.1f}s: {e}') | |
return None, None | |
return outer_func | |
class Exporter: | |
""" | |
Exporter | |
A class for exporting a model. | |
Attributes: | |
args (OmegaConf): Configuration for the exporter. | |
save_dir (Path): Directory to save results. | |
""" | |
def __init__(self, config=DEFAULT_CONFIG, overrides=None): | |
""" | |
Initializes the Exporter class. | |
Args: | |
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. | |
overrides (dict, optional): Configuration overrides. Defaults to None. | |
""" | |
if overrides is None: | |
overrides = {} | |
self.args = get_config(config, overrides) | |
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks | |
callbacks.add_integration_callbacks(self) | |
def __call__(self, model=None): | |
self.run_callbacks("on_export_start") | |
t = time.time() | |
format = self.args.format.lower() # to lowercase | |
fmts = tuple(export_formats()['Argument'][1:]) # available export formats | |
flags = [x == format for x in fmts] | |
assert sum(flags), f'ERROR: Invalid format={format}, valid formats are {fmts}' | |
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans | |
# Load PyTorch model | |
self.device = select_device('cpu' if self.args.device is None else self.args.device) | |
if self.args.half: | |
if self.device.type == 'cpu' and not coreml: | |
LOGGER.info('half=True only compatible with GPU or CoreML export, i.e. use device=0 or format=coreml') | |
self.args.half = False | |
assert not self.args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic' | |
# Checks | |
# if self.args.batch == model.args['batch_size']: # user has not modified training batch_size | |
self.args.batch = 1 | |
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size | |
if self.args.optimize: | |
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu' | |
# Input | |
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device) | |
file = Path(getattr(model, 'pt_path', None) or getattr(model, 'yaml_file', None) or model.yaml['yaml_file']) | |
if file.suffix == '.yaml': | |
file = Path(file.name) | |
# Update model | |
model = deepcopy(model).to(self.device) | |
for p in model.parameters(): | |
p.requires_grad = False | |
model.eval() | |
model = model.fuse() | |
for k, m in model.named_modules(): | |
if isinstance(m, (Detect, Segment)): | |
m.dynamic = self.args.dynamic | |
m.export = True | |
y = None | |
for _ in range(2): | |
y = model(im) # dry runs | |
if self.args.half and not coreml: | |
im, model = im.half(), model.half() # to FP16 | |
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape | |
LOGGER.info( | |
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") | |
# Warnings | |
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning | |
warnings.filterwarnings('ignore', category=UserWarning) # suppress shape prim::Constant missing ONNX warning | |
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress CoreML np.bool deprecation warning | |
# Assign | |
self.im = im | |
self.model = model | |
self.file = file | |
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else (x.shape for x in y) | |
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata | |
self.pretty_name = self.file.stem.replace('yolo', 'YOLO') | |
# Exports | |
f = [''] * len(fmts) # exported filenames | |
if jit: # TorchScript | |
f[0], _ = self._export_torchscript() | |
if engine: # TensorRT required before ONNX | |
f[1], _ = self._export_engine() | |
if onnx or xml: # OpenVINO requires ONNX | |
f[2], _ = self._export_onnx() | |
if xml: # OpenVINO | |
f[3], _ = self._export_openvino() | |
if coreml: # CoreML | |
f[4], _ = self._export_coreml() | |
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats | |
raise NotImplementedError('YOLOv8 TensorFlow export support is still under development. ' | |
'Please consider contributing to the effort if you have TF expertise. Thank you!') | |
assert not isinstance(model, ClassificationModel), 'ClassificationModel TF exports not yet supported.' | |
nms = False | |
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs, | |
agnostic_nms=self.args.agnostic_nms or tfjs) | |
if pb or tfjs: # pb prerequisite to tfjs | |
f[6], _ = self._export_pb(s_model) | |
if tflite or edgetpu: | |
f[7], _ = self._export_tflite(s_model, | |
int8=self.args.int8 or edgetpu, | |
data=self.args.data, | |
nms=nms, | |
agnostic_nms=self.args.agnostic_nms) | |
if edgetpu: | |
f[8], _ = self._export_edgetpu() | |
self._add_tflite_metadata(f[8] or f[7], num_outputs=len(s_model.outputs)) | |
if tfjs: | |
f[9], _ = self._export_tfjs() | |
if paddle: # PaddlePaddle | |
f[10], _ = self._export_paddle() | |
# Finish | |
f = [str(x) for x in f if x] # filter out '' and None | |
if any(f): | |
task = guess_task_from_head(model.yaml["head"][-1][-2]) | |
s = "-WARNING β οΈ not yet supported for YOLOv8 exported models" | |
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)' | |
f"\nResults saved to {colorstr('bold', file.parent.resolve())}" | |
f"\nPredict: yolo task={task} mode=predict model={f[-1]} {s}" | |
f"\nValidate: yolo task={task} mode=val model={f[-1]} {s}" | |
f"\nVisualize: https://netron.app") | |
self.run_callbacks("on_export_end") | |
return f # return list of exported files/dirs | |
def _export_torchscript(self, prefix=colorstr('TorchScript:')): | |
# YOLOv8 TorchScript model export | |
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') | |
f = self.file.with_suffix('.torchscript') | |
ts = torch.jit.trace(self.model, self.im, strict=False) | |
d = {"shape": self.im.shape, "stride": int(max(self.model.stride)), "names": self.model.names} | |
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() | |
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html | |
LOGGER.info(f'{prefix} optimizing for mobile...') | |
from torch.utils.mobile_optimizer import optimize_for_mobile | |
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) | |
else: | |
ts.save(str(f), _extra_files=extra_files) | |
return f, None | |
def _export_onnx(self, prefix=colorstr('ONNX:')): | |
# YOLOv8 ONNX export | |
check_requirements('onnx>=1.12.0') | |
import onnx # noqa | |
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') | |
f = str(self.file.with_suffix('.onnx')) | |
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0'] | |
dynamic = self.args.dynamic | |
if dynamic: | |
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640) | |
if isinstance(self.model, SegmentationModel): | |
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) | |
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160) | |
elif isinstance(self.model, DetectionModel): | |
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85) | |
torch.onnx.export( | |
self.model.cpu() if dynamic else self.model, # --dynamic only compatible with cpu | |
self.im.cpu() if dynamic else self.im, | |
f, | |
verbose=False, | |
opset_version=self.args.opset, | |
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False | |
input_names=['images'], | |
output_names=output_names, | |
dynamic_axes=dynamic or None) | |
# Checks | |
model_onnx = onnx.load(f) # load onnx model | |
onnx.checker.check_model(model_onnx) # check onnx model | |
# Metadata | |
d = {'stride': int(max(self.model.stride)), 'names': self.model.names} | |
for k, v in d.items(): | |
meta = model_onnx.metadata_props.add() | |
meta.key, meta.value = k, str(v) | |
onnx.save(model_onnx, f) | |
# Simplify | |
if self.args.simplify: | |
try: | |
check_requirements('onnxsim') | |
import onnxsim | |
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') | |
subprocess.run(f'onnxsim {f} {f}', shell=True) | |
except Exception as e: | |
LOGGER.info(f'{prefix} simplifier failure: {e}') | |
return f, model_onnx | |
def _export_openvino(self, prefix=colorstr('OpenVINO:')): | |
# YOLOv8 OpenVINO export | |
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/ | |
import openvino.inference_engine as ie # noqa | |
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') | |
f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}') | |
f_onnx = self.file.with_suffix('.onnx') | |
cmd = f"mo --input_model {f_onnx} --output_dir {f} --data_type {'FP16' if self.args.half else 'FP32'}" | |
subprocess.run(cmd.split(), check=True, env=os.environ) # export | |
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml | |
return f, None | |
def _export_paddle(self, prefix=colorstr('PaddlePaddle:')): | |
# YOLOv8 Paddle export | |
check_requirements(('paddlepaddle', 'x2paddle')) | |
import x2paddle # noqa | |
from x2paddle.convert import pytorch2paddle # noqa | |
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...') | |
f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}') | |
pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export | |
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml | |
return f, None | |
def _export_coreml(self, prefix=colorstr('CoreML:')): | |
# YOLOv8 CoreML export | |
check_requirements('coremltools>=6.0') | |
import coremltools as ct # noqa | |
class iOSModel(torch.nn.Module): | |
# Wrap an Ultralytics YOLO model for iOS export | |
def __init__(self, model, im): | |
super().__init__() | |
b, c, h, w = im.shape # batch, channel, height, width | |
self.model = model | |
self.nc = len(model.names) # number of classes | |
if w == h: | |
self.normalize = 1.0 / w # scalar | |
else: | |
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller) | |
def forward(self, x): | |
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1) | |
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4) | |
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') | |
f = self.file.with_suffix('.mlmodel') | |
model = iOSModel(self.model, self.im).eval() if self.args.nms else self.model | |
ts = torch.jit.trace(model, self.im, strict=False) # TorchScript model | |
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])]) | |
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None) | |
if bits < 32: | |
if MACOS: # quantization only supported on macOS | |
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode) | |
else: | |
LOGGER.info(f'{prefix} quantization only supported on macOS, skipping...') | |
if self.args.nms: | |
ct_model = self._pipeline_coreml(ct_model) | |
ct_model.save(str(f)) | |
return f, ct_model | |
def _export_engine(self, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): | |
# YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt | |
assert self.im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `device==0`' | |
try: | |
import tensorrt as trt # noqa | |
except ImportError: | |
if platform.system() == 'Linux': | |
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') | |
import tensorrt as trt # noqa | |
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=8.0.0 | |
self._export_onnx() | |
onnx = self.file.with_suffix('.onnx') | |
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') | |
assert onnx.exists(), f'failed to export ONNX file: {onnx}' | |
f = self.file.with_suffix('.engine') # TensorRT engine file | |
logger = trt.Logger(trt.Logger.INFO) | |
if verbose: | |
logger.min_severity = trt.Logger.Severity.VERBOSE | |
builder = trt.Builder(logger) | |
config = builder.create_builder_config() | |
config.max_workspace_size = workspace * 1 << 30 | |
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice | |
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) | |
network = builder.create_network(flag) | |
parser = trt.OnnxParser(network, logger) | |
if not parser.parse_from_file(str(onnx)): | |
raise RuntimeError(f'failed to load ONNX file: {onnx}') | |
inputs = [network.get_input(i) for i in range(network.num_inputs)] | |
outputs = [network.get_output(i) for i in range(network.num_outputs)] | |
for inp in inputs: | |
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}') | |
for out in outputs: | |
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}') | |
if self.args.dynamic: | |
shape = self.im.shape | |
if shape[0] <= 1: | |
LOGGER.warning(f"{prefix} WARNING β οΈ --dynamic model requires maximum --batch-size argument") | |
profile = builder.create_optimization_profile() | |
for inp in inputs: | |
profile.set_shape(inp.name, (1, *shape[1:]), (max(1, shape[0] // 2), *shape[1:]), shape) | |
config.add_optimization_profile(profile) | |
LOGGER.info( | |
f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}') | |
if builder.platform_has_fast_fp16 and self.args.half: | |
config.set_flag(trt.BuilderFlag.FP16) | |
with builder.build_engine(network, config) as engine, open(f, 'wb') as t: | |
t.write(engine.serialize()) | |
return f, None | |
def _export_saved_model(self, | |
nms=False, | |
agnostic_nms=False, | |
topk_per_class=100, | |
topk_all=100, | |
iou_thres=0.45, | |
conf_thres=0.25, | |
prefix=colorstr('TensorFlow SavedModel:')): | |
# YOLOv8 TensorFlow SavedModel export | |
try: | |
import tensorflow as tf # noqa | |
except ImportError: | |
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") | |
import tensorflow as tf # noqa | |
check_requirements(("onnx", "onnx2tf", "sng4onnx", "onnxsim", "onnx_graphsurgeon"), | |
cmds="--extra-index-url https://pypi.ngc.nvidia.com ") | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
f = str(self.file).replace(self.file.suffix, '_saved_model') | |
# Export to ONNX | |
self._export_onnx() | |
onnx = self.file.with_suffix('.onnx') | |
# Export to TF SavedModel | |
subprocess.run(f'onnx2tf -i {onnx} --output_signaturedefs -o {f}', shell=True) | |
# Load saved_model | |
keras_model = tf.saved_model.load(f, tags=None, options=None) | |
return f, keras_model | |
def _export_saved_model_OLD(self, | |
nms=False, | |
agnostic_nms=False, | |
topk_per_class=100, | |
topk_all=100, | |
iou_thres=0.45, | |
conf_thres=0.25, | |
prefix=colorstr('TensorFlow SavedModel:')): | |
# YOLOv8 TensorFlow SavedModel export | |
try: | |
import tensorflow as tf # noqa | |
except ImportError: | |
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}") | |
import tensorflow as tf # noqa | |
# from models.tf import TFModel | |
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
f = str(self.file).replace(self.file.suffix, '_saved_model') | |
batch_size, ch, *imgsz = list(self.im.shape) # BCHW | |
tf_models = None # TODO: no TF modules available | |
tf_model = tf_models.TFModel(cfg=self.model.yaml, model=self.model.cpu(), nc=self.model.nc, imgsz=imgsz) | |
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow | |
_ = tf_model.predict(im, nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) | |
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if self.args.dynamic else batch_size) | |
outputs = tf_model.predict(inputs, nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) | |
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) | |
keras_model.trainable = False | |
keras_model.summary() | |
if self.args.keras: | |
keras_model.save(f, save_format='tf') | |
else: | |
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) | |
m = tf.function(lambda x: keras_model(x)) # full model | |
m = m.get_concrete_function(spec) | |
frozen_func = convert_variables_to_constants_v2(m) | |
tfm = tf.Module() | |
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if nms else frozen_func(x), [spec]) | |
tfm.__call__(im) | |
tf.saved_model.save(tfm, | |
f, | |
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) | |
if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions()) | |
return f, keras_model | |
def _export_pb(self, keras_model, file, prefix=colorstr('TensorFlow GraphDef:')): | |
# YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow | |
import tensorflow as tf # noqa | |
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
f = file.with_suffix('.pb') | |
m = tf.function(lambda x: keras_model(x)) # full model | |
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) | |
frozen_func = convert_variables_to_constants_v2(m) | |
frozen_func.graph.as_graph_def() | |
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) | |
return f, None | |
def _export_tflite(self, keras_model, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')): | |
# YOLOv8 TensorFlow Lite export | |
import tensorflow as tf # noqa | |
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') | |
batch_size, ch, *imgsz = list(self.im.shape) # BCHW | |
f = str(self.file).replace(self.file.suffix, '-fp16.tflite') | |
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) | |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] | |
converter.target_spec.supported_types = [tf.float16] | |
converter.optimizations = [tf.lite.Optimize.DEFAULT] | |
if int8: | |
def representative_dataset_gen(dataset, n_images=100): | |
# Dataset generator for use with converter.representative_dataset, returns a generator of np arrays | |
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): | |
im = np.transpose(img, [1, 2, 0]) | |
im = np.expand_dims(im, axis=0).astype(np.float32) | |
im /= 255 | |
yield [im] | |
if n >= n_images: | |
break | |
dataset = LoadImages(check_dataset(check_yaml(data))['train'], imgsz=imgsz, auto=False) | |
converter.representative_dataset = lambda: representative_dataset_gen(dataset, n_images=100) | |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] | |
converter.target_spec.supported_types = [] | |
converter.inference_input_type = tf.uint8 # or tf.int8 | |
converter.inference_output_type = tf.uint8 # or tf.int8 | |
converter.experimental_new_quantizer = True | |
f = str(self.file).replace(self.file.suffix, '-int8.tflite') | |
if nms or agnostic_nms: | |
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS) | |
tflite_model = converter.convert() | |
open(f, "wb").write(tflite_model) | |
return f, None | |
def _export_edgetpu(self, prefix=colorstr('Edge TPU:')): | |
# YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ | |
cmd = 'edgetpu_compiler --version' | |
help_url = 'https://coral.ai/docs/edgetpu/compiler/' | |
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' | |
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0: | |
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') | |
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system | |
for c in ( | |
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', | |
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | ' # no comma | |
'sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', | |
'sudo apt-get update', | |
'sudo apt-get install edgetpu-compiler'): | |
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) | |
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] | |
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') | |
f = str(self.file).replace(self.file.suffix, '-int8_edgetpu.tflite') # Edge TPU model | |
f_tfl = str(self.file).replace(self.file.suffix, '-int8.tflite') # TFLite model | |
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {self.file.parent} {f_tfl}" | |
subprocess.run(cmd.split(), check=True) | |
return f, None | |
def _export_tfjs(self, prefix=colorstr('TensorFlow.js:')): | |
# YOLOv8 TensorFlow.js export | |
check_requirements('tensorflowjs') | |
import tensorflowjs as tfjs # noqa | |
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') | |
f = str(self.file).replace(self.file.suffix, '_web_model') # js dir | |
f_pb = self.file.with_suffix('.pb') # *.pb path | |
f_json = Path(f) / 'model.json' # *.json path | |
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \ | |
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}' | |
subprocess.run(cmd.split()) | |
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order | |
subst = re.sub( | |
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}, ' | |
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' | |
r'"Identity_1": {"name": "Identity_1"}, ' | |
r'"Identity_2": {"name": "Identity_2"}, ' | |
r'"Identity_3": {"name": "Identity_3"}}}', f_json.read_text()) | |
j.write(subst) | |
return f, None | |
def _add_tflite_metadata(self, file, num_outputs): | |
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata | |
with contextlib.suppress(ImportError): | |
# check_requirements('tflite_support') | |
from tflite_support import flatbuffers # noqa | |
from tflite_support import metadata as _metadata # noqa | |
from tflite_support import metadata_schema_py_generated as _metadata_fb # noqa | |
tmp_file = Path('/tmp/meta.txt') | |
with open(tmp_file, 'w') as meta_f: | |
meta_f.write(str(self.metadata)) | |
model_meta = _metadata_fb.ModelMetadataT() | |
label_file = _metadata_fb.AssociatedFileT() | |
label_file.name = tmp_file.name | |
model_meta.associatedFiles = [label_file] | |
subgraph = _metadata_fb.SubGraphMetadataT() | |
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()] | |
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs | |
model_meta.subgraphMetadata = [subgraph] | |
b = flatbuffers.Builder(0) | |
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER) | |
metadata_buf = b.Output() | |
populator = _metadata.MetadataPopulator.with_model_file(file) | |
populator.load_metadata_buffer(metadata_buf) | |
populator.load_associated_files([str(tmp_file)]) | |
populator.populate() | |
tmp_file.unlink() | |
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')): | |
# YOLOv8 CoreML pipeline | |
import coremltools as ct # noqa | |
LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...') | |
batch_size, ch, h, w = list(self.im.shape) # BCHW | |
# Output shapes | |
spec = model.get_spec() | |
out0, out1 = iter(spec.description.output) | |
if MACOS: | |
from PIL import Image | |
img = Image.new('RGB', (w, h)) # img(192 width, 320 height) | |
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection | |
out = model.predict({'image': img}) | |
out0_shape = out[out0.name].shape | |
out1_shape = out[out1.name].shape | |
else: # linux and windows can not run model.predict(), get sizes from pytorch output y | |
out0_shape = self.output_shape[1], self.output_shape[2] - 5 # (3780, 80) | |
out1_shape = self.output_shape[1], 4 # (3780, 4) | |
# Checks | |
names = self.metadata['names'] | |
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height | |
na, nc = out0_shape | |
# na, nc = out0.type.multiArrayType.shape # number anchors, classes | |
assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check | |
# Define output shapes (missing) | |
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) | |
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) | |
# spec.neuralNetwork.preprocessing[0].featureName = '0' | |
# Flexible input shapes | |
# from coremltools.models.neural_network import flexible_shape_utils | |
# s = [] # shapes | |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192)) | |
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width) | |
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s) | |
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges | |
# r.add_height_range((192, 640)) | |
# r.add_width_range((192, 640)) | |
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r) | |
print(spec.description) | |
# Model from spec | |
model = ct.models.MLModel(spec) | |
# 3. Create NMS protobuf | |
nms_spec = ct.proto.Model_pb2.Model() | |
nms_spec.specificationVersion = 5 | |
for i in range(2): | |
decoder_output = model._spec.description.output[i].SerializeToString() | |
nms_spec.description.input.add() | |
nms_spec.description.input[i].ParseFromString(decoder_output) | |
nms_spec.description.output.add() | |
nms_spec.description.output[i].ParseFromString(decoder_output) | |
nms_spec.description.output[0].name = 'confidence' | |
nms_spec.description.output[1].name = 'coordinates' | |
output_sizes = [nc, 4] | |
for i in range(2): | |
ma_type = nms_spec.description.output[i].type.multiArrayType | |
ma_type.shapeRange.sizeRanges.add() | |
ma_type.shapeRange.sizeRanges[0].lowerBound = 0 | |
ma_type.shapeRange.sizeRanges[0].upperBound = -1 | |
ma_type.shapeRange.sizeRanges.add() | |
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] | |
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] | |
del ma_type.shape[:] | |
nms = nms_spec.nonMaximumSuppression | |
nms.confidenceInputFeatureName = out0.name # 1x507x80 | |
nms.coordinatesInputFeatureName = out1.name # 1x507x4 | |
nms.confidenceOutputFeatureName = 'confidence' | |
nms.coordinatesOutputFeatureName = 'coordinates' | |
nms.iouThresholdInputFeatureName = 'iouThreshold' | |
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold' | |
nms.iouThreshold = 0.45 | |
nms.confidenceThreshold = 0.25 | |
nms.pickTop.perClass = True | |
nms.stringClassLabels.vector.extend(names.values()) | |
nms_model = ct.models.MLModel(nms_spec) | |
# 4. Pipeline models together | |
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)), | |
('iouThreshold', ct.models.datatypes.Double()), | |
('confidenceThreshold', ct.models.datatypes.Double())], | |
output_features=['confidence', 'coordinates']) | |
pipeline.add_model(model) | |
pipeline.add_model(nms_model) | |
# Correct datatypes | |
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) | |
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) | |
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) | |
# Update metadata | |
pipeline.spec.specificationVersion = 5 | |
pipeline.spec.description.metadata.versionString = f'Ultralytics YOLOv{ultralytics.__version__}' | |
pipeline.spec.description.metadata.shortDescription = f'Ultralytics {self.pretty_name} CoreML model' | |
pipeline.spec.description.metadata.author = 'Ultralytics (https://ultralytics.com)' | |
pipeline.spec.description.metadata.license = 'GPL-3.0 license (https://ultralytics.com/license)' | |
pipeline.spec.description.metadata.userDefined.update({ | |
'IoU threshold': str(nms.iouThreshold), | |
'Confidence threshold': str(nms.confidenceThreshold)}) | |
# Save the model | |
model = ct.models.MLModel(pipeline.spec) | |
model.input_description['image'] = 'Input image' | |
model.input_description['iouThreshold'] = f'(optional) IOU threshold override (default: {nms.iouThreshold})' | |
model.input_description['confidenceThreshold'] = \ | |
f'(optional) Confidence threshold override (default: {nms.confidenceThreshold})' | |
model.output_description['confidence'] = 'Boxes Γ Class confidence (see user-defined metadata "classes")' | |
model.output_description['coordinates'] = 'Boxes Γ [x, y, width, height] (relative to image size)' | |
LOGGER.info(f'{prefix} pipeline success') | |
return model | |
def run_callbacks(self, event: str): | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |
def export(cfg): | |
cfg.model = cfg.model or "yolov8n.yaml" | |
cfg.format = cfg.format or "torchscript" | |
# exporter = Exporter(cfg) | |
# | |
# model = None | |
# if isinstance(cfg.model, (str, Path)): | |
# if Path(cfg.model).suffix == '.yaml': | |
# model = DetectionModel(cfg.model) | |
# elif Path(cfg.model).suffix == '.pt': | |
# model = attempt_load_weights(cfg.model, fuse=True) | |
# else: | |
# TypeError(f'Unsupported model type {cfg.model}') | |
# exporter(model=model) | |
from ultralytics import YOLO | |
model = YOLO(cfg.model) | |
model.export(**cfg) | |
if __name__ == "__main__": | |
""" | |
CLI: | |
yolo mode=export model=yolov8n.yaml format=onnx | |
""" | |
export() | |