kisa-misa's picture
Upload 213 files
2283b14
raw
history blame
4.59 kB
# Ultralytics YOLO πŸš€, GPL-3.0 license
import signal
import sys
from pathlib import Path
from time import sleep
import requests
from ultralytics import __version__
from ultralytics.hub.utils import HUB_API_ROOT, check_dataset_disk_space, smart_request
from ultralytics.yolo.utils import LOGGER, is_colab, threaded
AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'
session = None
def signal_handler(signum, frame):
""" Confirm exit """
global hub_logger
LOGGER.info(f'Signal received. {signum} {frame}')
if isinstance(session, HubTrainingSession):
hub_logger.alive = False
del hub_logger
sys.exit(signum)
signal.signal(signal.SIGTERM, signal_handler)
signal.signal(signal.SIGINT, signal_handler)
class HubTrainingSession:
def __init__(self, model_id, auth):
self.agent_id = None # identifies which instance is communicating with server
self.model_id = model_id
self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}'
self.auth_header = auth.get_auth_header()
self.rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds)
self.t = {} # rate limit timers (seconds)
self.metrics_queue = {} # metrics queue
self.alive = True # for heartbeats
self.model = self._get_model()
self._heartbeats() # start heartbeats
def __del__(self):
# Class destructor
self.alive = False
def upload_metrics(self):
payload = {"metrics": self.metrics_queue.copy(), "type": "metrics"}
smart_request(f'{self.api_url}', json=payload, headers=self.auth_header, code=2)
def upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
# Upload a model to HUB
file = None
if Path(weights).is_file():
with open(weights, "rb") as f:
file = f.read()
if final:
smart_request(f'{self.api_url}/upload',
data={
"epoch": epoch,
"type": "final",
"map": map},
files={"best.pt": file},
headers=self.auth_header,
retry=10,
timeout=3600,
code=4)
else:
smart_request(f'{self.api_url}/upload',
data={
"epoch": epoch,
"type": "epoch",
"isBest": bool(is_best)},
headers=self.auth_header,
files={"last.pt": file},
code=3)
def _get_model(self):
# Returns model from database by id
api_url = f"{HUB_API_ROOT}/v1/models/{self.model_id}"
headers = self.auth_header
try:
r = smart_request(api_url, method="get", headers=headers, thread=False, code=0)
data = r.json().get("data", None)
if not data:
return
assert data['data'], 'ERROR: Dataset may still be processing. Please wait a minute and try again.' # RF fix
self.model_id = data["id"]
return data
except requests.exceptions.ConnectionError as e:
raise ConnectionRefusedError('ERROR: The HUB server is not online. Please try again later.') from e
def check_disk_space(self):
if not check_dataset_disk_space(self.model['data']):
raise MemoryError("Not enough disk space")
# COMMENT: Should not be needed as HUB is now considered an integration and is in integrations_callbacks
# import ultralytics.yolo.utils.callbacks.hub as hub_callbacks
# @staticmethod
# def register_callbacks(trainer):
# for k, v in hub_callbacks.callbacks.items():
# trainer.add_callback(k, v)
@threaded
def _heartbeats(self):
while self.alive:
r = smart_request(f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
json={
"agent": AGENT_NAME,
"agentId": self.agent_id},
headers=self.auth_header,
retry=0,
code=5,
thread=False)
self.agent_id = r.json().get('data', {}).get('agentId', None)
sleep(self.rate_limits['heartbeat'])