kisa-misa's picture
Upload 213 files
2283b14
raw
history blame
No virus
18.3 kB
# Ultralytics YOLO 🚀, GPL-3.0 license
import contextlib
from copy import deepcopy
import thop
import torch
import torch.nn as nn
from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
GhostBottleneck, GhostConv, Segment)
from ultralytics.yolo.utils import DEFAULT_CONFIG_DICT, DEFAULT_CONFIG_KEYS, LOGGER, colorstr, yaml_load
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_dicts, make_divisible,
model_info, scale_img, time_sync)
class BaseModel(nn.Module):
'''
The BaseModel class is a base class for all the models in the Ultralytics YOLO family.
'''
def forward(self, x, profile=False, visualize=False):
"""
> `forward` is a wrapper for `_forward_once` that runs the model on a single scale
Args:
x: the input image
profile: whether to profile the model. Defaults to False
visualize: if True, will return the intermediate feature maps. Defaults to False
Returns:
The output of the network.
"""
return self._forward_once(x, profile, visualize)
def _forward_once(self, x, profile=False, visualize=False):
"""
> Forward pass of the network
Args:
x: input to the model
profile: if True, the time taken for each layer will be printed. Defaults to False
visualize: If True, it will save the feature maps of the model. Defaults to False
Returns:
The last layer of the model.
"""
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
pass
# TODO: feature_visualization(x, m.type, m.i, save_dir=visualize)
return x
def _profile_one_layer(self, m, x, dt):
"""
It takes a model, an input, and a list of times, and it profiles the model on the input, appending
the time to the list
Args:
m: the model
x: the input image
dt: list of time taken for each layer
"""
c = m == self.model[-1] # is final layer, copy input as inplace fix
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
t = time_sync()
for _ in range(10):
m(x.copy() if c else x)
dt.append((time_sync() - t) * 100)
if m == self.model[0]:
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
if c:
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
def fuse(self):
"""
> It takes a model and fuses the Conv2d() and BatchNorm2d() layers into a single layer
Returns:
The model is being returned.
"""
LOGGER.info('Fusing layers... ')
for m in self.model.modules():
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, 'bn') # remove batchnorm
m.forward = m.forward_fuse # update forward
self.info()
return self
def info(self, verbose=False, imgsz=640):
"""
Prints model information
Args:
verbose: if True, prints out the model information. Defaults to False
imgsz: the size of the image that the model will be trained on. Defaults to 640
"""
model_info(self, verbose, imgsz)
def _apply(self, fn):
"""
`_apply()` is a function that applies a function to all the tensors in the model that are not
parameters or registered buffers
Args:
fn: the function to apply to the model
Returns:
A model that is a Detect() object.
"""
self = super()._apply(fn)
m = self.model[-1] # Detect()
if isinstance(m, (Detect, Segment)):
m.stride = fn(m.stride)
m.anchors = fn(m.anchors)
m.strides = fn(m.strides)
return self
def load(self, weights):
"""
> This function loads the weights of the model from a file
Args:
weights: The weights to load into the model.
"""
# Force all tasks to implement this function
raise NotImplementedError("This function needs to be implemented by derived classes!")
class DetectionModel(BaseModel):
# YOLOv5 detection model
def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes
super().__init__()
self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True) # cfg dict
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
if nc and nc != self.yaml['nc']:
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml['nc'] = nc # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
self.inplace = self.yaml.get('inplace', True)
# Build strides
m = self.model[-1] # Detect()
if isinstance(m, (Detect, Segment)):
s = 256 # 2x min stride
m.inplace = self.inplace
forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
self.stride = m.stride
m.bias_init() # only run once
# Init weights, biases
initialize_weights(self)
if verbose:
self.info()
LOGGER.info('')
def forward(self, x, augment=False, profile=False, visualize=False):
if augment:
return self._forward_augment(x) # augmented inference, None
return self._forward_once(x, profile, visualize) # single-scale inference, train
def _forward_augment(self, x):
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self._forward_once(xi)[0] # forward
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi = self._descale_pred(yi, fi, si, img_size)
y.append(yi)
y = self._clip_augmented(y) # clip augmented tails
return torch.cat(y, -1), None # augmented inference, train
@staticmethod
def _descale_pred(p, flips, scale, img_size, dim=1):
# de-scale predictions following augmented inference (inverse operation)
p[:, :4] /= scale # de-scale
x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
if flips == 2:
y = img_size[0] - y # de-flip ud
elif flips == 3:
x = img_size[1] - x # de-flip lr
return torch.cat((x, y, wh, cls), dim)
def _clip_augmented(self, y):
# Clip YOLOv5 augmented inference tails
nl = self.model[-1].nl # number of detection layers (P3-P5)
g = sum(4 ** x for x in range(nl)) # grid points
e = 1 # exclude layer count
i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices
y[0] = y[0][..., :-i] # large
i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
y[-1] = y[-1][..., i:] # small
return y
def load(self, weights, verbose=True):
csd = weights.float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, self.state_dict()) # intersect
self.load_state_dict(csd, strict=False) # load
if verbose:
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')
class SegmentationModel(DetectionModel):
# YOLOv5 segmentation model
def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
super().__init__(cfg, ch, nc, verbose)
class ClassificationModel(BaseModel):
# YOLOv5 classification model
def __init__(self,
cfg=None,
model=None,
ch=3,
nc=1000,
cutoff=10,
verbose=True): # yaml, model, number of classes, cutoff index
super().__init__()
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose)
def _from_detection_model(self, model, nc=1000, cutoff=10):
# Create a YOLOv5 classification model from a YOLOv5 detection model
from ultralytics.nn.autobackend import AutoBackend
if isinstance(model, AutoBackend):
model = model.model # unwrap DetectMultiBackend
model.model = model.model[:cutoff] # backbone
m = model.model[-1] # last layer
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
c = Classify(ch, nc) # Classify()
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
model.model[-1] = c # replace
self.model = model.model
self.stride = model.stride
self.save = []
self.nc = nc
def _from_yaml(self, cfg, ch, nc, verbose):
self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True) # cfg dict
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
if nc and nc != self.yaml['nc']:
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml['nc'] = nc # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
self.info()
def load(self, weights):
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
csd = model.float().state_dict()
csd = intersect_dicts(csd, self.state_dict()) # intersect
self.load_state_dict(csd, strict=False) # load
@staticmethod
def reshape_outputs(model, nc):
# Update a TorchVision classification model to class count 'n' if required
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
if isinstance(m, Classify): # YOLO Classify() head
if m.linear.out_features != nc:
m.linear = nn.Linear(m.linear.in_features, nc)
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
if m.out_features != nc:
setattr(model, name, nn.Linear(m.in_features, nc))
elif isinstance(m, nn.Sequential):
types = [type(x) for x in m]
if nn.Linear in types:
i = types.index(nn.Linear) # nn.Linear index
if m[i].out_features != nc:
m[i] = nn.Linear(m[i].in_features, nc)
elif nn.Conv2d in types:
i = types.index(nn.Conv2d) # nn.Conv2d index
if m[i].out_channels != nc:
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
# Functions ------------------------------------------------------------------------------------------------------------
def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
from ultralytics.yolo.utils.downloads import attempt_download
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
args = {**DEFAULT_CONFIG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
# Model compatibility updates
ckpt.args = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS} # attach args to model
ckpt.pt_path = weights # attach *.pt file path to model
if not hasattr(ckpt, 'stride'):
ckpt.stride = torch.tensor([32.])
# Append
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
# Module compatibility updates
for m in model.modules():
t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
m.inplace = inplace # torch 1.7.0 compatibility
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model
if len(model) == 1:
return model[-1]
# Return ensemble
print(f'Ensemble created with {weights}\n')
for k in 'names', 'nc', 'yaml':
setattr(model, k, getattr(model[0], k))
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
return model
def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
# Loads a single model weights
from ultralytics.yolo.utils.downloads import attempt_download
ckpt = torch.load(attempt_download(weight), map_location='cpu') # load
args = {**DEFAULT_CONFIG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args
model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
# Model compatibility updates
model.args = {k: v for k, v in args.items() if k in DEFAULT_CONFIG_KEYS} # attach args to model
model.pt_path = weight # attach *.pt file path to model
if not hasattr(model, 'stride'):
model.stride = torch.tensor([32.])
model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode
# Module compatibility updates
for m in model.modules():
t = type(m)
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
m.inplace = inplace # torch 1.7.0 compatibility
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model and ckpt
return model, ckpt
def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
# Parse a YOLO model.yaml dictionary
if verbose:
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
if act:
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
if verbose:
LOGGER.info(f"{colorstr('activation:')} {act}") # print
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
with contextlib.suppress(NameError):
args[j] = eval(a) if isinstance(a, str) else a # eval strings
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in {
Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
c1, c2 = ch[f], args[0]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(c2 * gw, 8)
args = [c1, c2, *args[1:]]
if m in {BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x}:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
elif m in {Detect, Segment}:
args.append([ch[x] for x in f])
if m is Segment:
args[2] = make_divisible(args[2] * gw, 8)
else:
c2 = ch[f]
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
m.np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
if verbose:
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save)