Spaces:
Paused
Paused
| import logging | |
| import warnings | |
| from abc import ABCMeta, abstractmethod | |
| from collections import OrderedDict | |
| import annotator.uniformer.mmcv as mmcv | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| import torch.nn as nn | |
| from annotator.uniformer.mmcv.runner import auto_fp16 | |
| class BaseSegmentor(nn.Module): | |
| """Base class for segmentors.""" | |
| __metaclass__ = ABCMeta | |
| def __init__(self): | |
| super(BaseSegmentor, self).__init__() | |
| self.fp16_enabled = False | |
| def with_neck(self): | |
| """bool: whether the segmentor has neck""" | |
| return hasattr(self, 'neck') and self.neck is not None | |
| def with_auxiliary_head(self): | |
| """bool: whether the segmentor has auxiliary head""" | |
| return hasattr(self, | |
| 'auxiliary_head') and self.auxiliary_head is not None | |
| def with_decode_head(self): | |
| """bool: whether the segmentor has decode head""" | |
| return hasattr(self, 'decode_head') and self.decode_head is not None | |
| def extract_feat(self, imgs): | |
| """Placeholder for extract features from images.""" | |
| pass | |
| def encode_decode(self, img, img_metas): | |
| """Placeholder for encode images with backbone and decode into a | |
| semantic segmentation map of the same size as input.""" | |
| pass | |
| def forward_train(self, imgs, img_metas, **kwargs): | |
| """Placeholder for Forward function for training.""" | |
| pass | |
| def simple_test(self, img, img_meta, **kwargs): | |
| """Placeholder for single image test.""" | |
| pass | |
| def aug_test(self, imgs, img_metas, **kwargs): | |
| """Placeholder for augmentation test.""" | |
| pass | |
| def init_weights(self, pretrained=None): | |
| """Initialize the weights in segmentor. | |
| Args: | |
| pretrained (str, optional): Path to pre-trained weights. | |
| Defaults to None. | |
| """ | |
| if pretrained is not None: | |
| logger = logging.getLogger() | |
| logger.info(f'load model from: {pretrained}') | |
| def forward_test(self, imgs, img_metas, **kwargs): | |
| """ | |
| Args: | |
| imgs (List[Tensor]): the outer list indicates test-time | |
| augmentations and inner Tensor should have a shape NxCxHxW, | |
| which contains all images in the batch. | |
| img_metas (List[List[dict]]): the outer list indicates test-time | |
| augs (multiscale, flip, etc.) and the inner list indicates | |
| images in a batch. | |
| """ | |
| for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: | |
| if not isinstance(var, list): | |
| raise TypeError(f'{name} must be a list, but got ' | |
| f'{type(var)}') | |
| num_augs = len(imgs) | |
| if num_augs != len(img_metas): | |
| raise ValueError(f'num of augmentations ({len(imgs)}) != ' | |
| f'num of image meta ({len(img_metas)})') | |
| # all images in the same aug batch all of the same ori_shape and pad | |
| # shape | |
| for img_meta in img_metas: | |
| ori_shapes = [_['ori_shape'] for _ in img_meta] | |
| assert all(shape == ori_shapes[0] for shape in ori_shapes) | |
| img_shapes = [_['img_shape'] for _ in img_meta] | |
| assert all(shape == img_shapes[0] for shape in img_shapes) | |
| pad_shapes = [_['pad_shape'] for _ in img_meta] | |
| assert all(shape == pad_shapes[0] for shape in pad_shapes) | |
| if num_augs == 1: | |
| return self.simple_test(imgs[0], img_metas[0], **kwargs) | |
| else: | |
| return self.aug_test(imgs, img_metas, **kwargs) | |
| def forward(self, img, img_metas, return_loss=True, **kwargs): | |
| """Calls either :func:`forward_train` or :func:`forward_test` depending | |
| on whether ``return_loss`` is ``True``. | |
| Note this setting will change the expected inputs. When | |
| ``return_loss=True``, img and img_meta are single-nested (i.e. Tensor | |
| and List[dict]), and when ``resturn_loss=False``, img and img_meta | |
| should be double nested (i.e. List[Tensor], List[List[dict]]), with | |
| the outer list indicating test time augmentations. | |
| """ | |
| if return_loss: | |
| return self.forward_train(img, img_metas, **kwargs) | |
| else: | |
| return self.forward_test(img, img_metas, **kwargs) | |
| def train_step(self, data_batch, optimizer, **kwargs): | |
| """The iteration step during training. | |
| This method defines an iteration step during training, except for the | |
| back propagation and optimizer updating, which are done in an optimizer | |
| hook. Note that in some complicated cases or models, the whole process | |
| including back propagation and optimizer updating is also defined in | |
| this method, such as GAN. | |
| Args: | |
| data (dict): The output of dataloader. | |
| optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of | |
| runner is passed to ``train_step()``. This argument is unused | |
| and reserved. | |
| Returns: | |
| dict: It should contain at least 3 keys: ``loss``, ``log_vars``, | |
| ``num_samples``. | |
| ``loss`` is a tensor for back propagation, which can be a | |
| weighted sum of multiple losses. | |
| ``log_vars`` contains all the variables to be sent to the | |
| logger. | |
| ``num_samples`` indicates the batch size (when the model is | |
| DDP, it means the batch size on each GPU), which is used for | |
| averaging the logs. | |
| """ | |
| losses = self(**data_batch) | |
| loss, log_vars = self._parse_losses(losses) | |
| outputs = dict( | |
| loss=loss, | |
| log_vars=log_vars, | |
| num_samples=len(data_batch['img_metas'])) | |
| return outputs | |
| def val_step(self, data_batch, **kwargs): | |
| """The iteration step during validation. | |
| This method shares the same signature as :func:`train_step`, but used | |
| during val epochs. Note that the evaluation after training epochs is | |
| not implemented with this method, but an evaluation hook. | |
| """ | |
| output = self(**data_batch, **kwargs) | |
| return output | |
| def _parse_losses(losses): | |
| """Parse the raw outputs (losses) of the network. | |
| Args: | |
| losses (dict): Raw output of the network, which usually contain | |
| losses and other necessary information. | |
| Returns: | |
| tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor | |
| which may be a weighted sum of all losses, log_vars contains | |
| all the variables to be sent to the logger. | |
| """ | |
| log_vars = OrderedDict() | |
| for loss_name, loss_value in losses.items(): | |
| if isinstance(loss_value, torch.Tensor): | |
| log_vars[loss_name] = loss_value.mean() | |
| elif isinstance(loss_value, list): | |
| log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) | |
| else: | |
| raise TypeError( | |
| f'{loss_name} is not a tensor or list of tensors') | |
| loss = sum(_value for _key, _value in log_vars.items() | |
| if 'loss' in _key) | |
| log_vars['loss'] = loss | |
| for loss_name, loss_value in log_vars.items(): | |
| # reduce loss when distributed training | |
| if dist.is_available() and dist.is_initialized(): | |
| loss_value = loss_value.data.clone() | |
| dist.all_reduce(loss_value.div_(dist.get_world_size())) | |
| log_vars[loss_name] = loss_value.item() | |
| return loss, log_vars | |
| def show_result(self, | |
| img, | |
| result, | |
| palette=None, | |
| win_name='', | |
| show=False, | |
| wait_time=0, | |
| out_file=None, | |
| opacity=0.5): | |
| """Draw `result` over `img`. | |
| Args: | |
| img (str or Tensor): The image to be displayed. | |
| result (Tensor): The semantic segmentation results to draw over | |
| `img`. | |
| palette (list[list[int]]] | np.ndarray | None): The palette of | |
| segmentation map. If None is given, random palette will be | |
| generated. Default: None | |
| win_name (str): The window name. | |
| wait_time (int): Value of waitKey param. | |
| Default: 0. | |
| show (bool): Whether to show the image. | |
| Default: False. | |
| out_file (str or None): The filename to write the image. | |
| Default: None. | |
| opacity(float): Opacity of painted segmentation map. | |
| Default 0.5. | |
| Must be in (0, 1] range. | |
| Returns: | |
| img (Tensor): Only if not `show` or `out_file` | |
| """ | |
| img = mmcv.imread(img) | |
| img = img.copy() | |
| seg = result[0] | |
| if palette is None: | |
| if self.PALETTE is None: | |
| palette = np.random.randint( | |
| 0, 255, size=(len(self.CLASSES), 3)) | |
| else: | |
| palette = self.PALETTE | |
| palette = np.array(palette) | |
| assert palette.shape[0] == len(self.CLASSES) | |
| assert palette.shape[1] == 3 | |
| assert len(palette.shape) == 2 | |
| assert 0 < opacity <= 1.0 | |
| color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) | |
| for label, color in enumerate(palette): | |
| color_seg[seg == label, :] = color | |
| # convert to BGR | |
| color_seg = color_seg[..., ::-1] | |
| img = img * (1 - opacity) + color_seg * opacity | |
| img = img.astype(np.uint8) | |
| # if out_file specified, do not show image in window | |
| if out_file is not None: | |
| show = False | |
| if show: | |
| mmcv.imshow(img, win_name, wait_time) | |
| if out_file is not None: | |
| mmcv.imwrite(img, out_file) | |
| if not (show or out_file): | |
| warnings.warn('show==False and out_file is not specified, only ' | |
| 'result image will be returned') | |
| return img | |