kirch's picture
Duplicate from PAIR/Text2Video-Zero
508927a
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import cv2
import numpy as np
from annotator.uniformer.mmcv.arraymisc import dequantize, quantize
from annotator.uniformer.mmcv.image import imread, imwrite
from annotator.uniformer.mmcv.utils import is_str
def flowread(flow_or_path, quantize=False, concat_axis=0, *args, **kwargs):
"""Read an optical flow map.
Args:
flow_or_path (ndarray or str): A flow map or filepath.
quantize (bool): whether to read quantized pair, if set to True,
remaining args will be passed to :func:`dequantize_flow`.
concat_axis (int): The axis that dx and dy are concatenated,
can be either 0 or 1. Ignored if quantize is False.
Returns:
ndarray: Optical flow represented as a (h, w, 2) numpy array
"""
if isinstance(flow_or_path, np.ndarray):
if (flow_or_path.ndim != 3) or (flow_or_path.shape[-1] != 2):
raise ValueError(f'Invalid flow with shape {flow_or_path.shape}')
return flow_or_path
elif not is_str(flow_or_path):
raise TypeError(f'"flow_or_path" must be a filename or numpy array, '
f'not {type(flow_or_path)}')
if not quantize:
with open(flow_or_path, 'rb') as f:
try:
header = f.read(4).decode('utf-8')
except Exception:
raise IOError(f'Invalid flow file: {flow_or_path}')
else:
if header != 'PIEH':
raise IOError(f'Invalid flow file: {flow_or_path}, '
'header does not contain PIEH')
w = np.fromfile(f, np.int32, 1).squeeze()
h = np.fromfile(f, np.int32, 1).squeeze()
flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2))
else:
assert concat_axis in [0, 1]
cat_flow = imread(flow_or_path, flag='unchanged')
if cat_flow.ndim != 2:
raise IOError(
f'{flow_or_path} is not a valid quantized flow file, '
f'its dimension is {cat_flow.ndim}.')
assert cat_flow.shape[concat_axis] % 2 == 0
dx, dy = np.split(cat_flow, 2, axis=concat_axis)
flow = dequantize_flow(dx, dy, *args, **kwargs)
return flow.astype(np.float32)
def flowwrite(flow, filename, quantize=False, concat_axis=0, *args, **kwargs):
"""Write optical flow to file.
If the flow is not quantized, it will be saved as a .flo file losslessly,
otherwise a jpeg image which is lossy but of much smaller size. (dx and dy
will be concatenated horizontally into a single image if quantize is True.)
Args:
flow (ndarray): (h, w, 2) array of optical flow.
filename (str): Output filepath.
quantize (bool): Whether to quantize the flow and save it to 2 jpeg
images. If set to True, remaining args will be passed to
:func:`quantize_flow`.
concat_axis (int): The axis that dx and dy are concatenated,
can be either 0 or 1. Ignored if quantize is False.
"""
if not quantize:
with open(filename, 'wb') as f:
f.write('PIEH'.encode('utf-8'))
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
flow = flow.astype(np.float32)
flow.tofile(f)
f.flush()
else:
assert concat_axis in [0, 1]
dx, dy = quantize_flow(flow, *args, **kwargs)
dxdy = np.concatenate((dx, dy), axis=concat_axis)
imwrite(dxdy, filename)
def quantize_flow(flow, max_val=0.02, norm=True):
"""Quantize flow to [0, 255].
After this step, the size of flow will be much smaller, and can be
dumped as jpeg images.
Args:
flow (ndarray): (h, w, 2) array of optical flow.
max_val (float): Maximum value of flow, values beyond
[-max_val, max_val] will be truncated.
norm (bool): Whether to divide flow values by image width/height.
Returns:
tuple[ndarray]: Quantized dx and dy.
"""
h, w, _ = flow.shape
dx = flow[..., 0]
dy = flow[..., 1]
if norm:
dx = dx / w # avoid inplace operations
dy = dy / h
# use 255 levels instead of 256 to make sure 0 is 0 after dequantization.
flow_comps = [
quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy]
]
return tuple(flow_comps)
def dequantize_flow(dx, dy, max_val=0.02, denorm=True):
"""Recover from quantized flow.
Args:
dx (ndarray): Quantized dx.
dy (ndarray): Quantized dy.
max_val (float): Maximum value used when quantizing.
denorm (bool): Whether to multiply flow values with width/height.
Returns:
ndarray: Dequantized flow.
"""
assert dx.shape == dy.shape
assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1)
dx, dy = [dequantize(d, -max_val, max_val, 255) for d in [dx, dy]]
if denorm:
dx *= dx.shape[1]
dy *= dx.shape[0]
flow = np.dstack((dx, dy))
return flow
def flow_warp(img, flow, filling_value=0, interpolate_mode='nearest'):
"""Use flow to warp img.
Args:
img (ndarray, float or uint8): Image to be warped.
flow (ndarray, float): Optical Flow.
filling_value (int): The missing pixels will be set with filling_value.
interpolate_mode (str): bilinear -> Bilinear Interpolation;
nearest -> Nearest Neighbor.
Returns:
ndarray: Warped image with the same shape of img
"""
warnings.warn('This function is just for prototyping and cannot '
'guarantee the computational efficiency.')
assert flow.ndim == 3, 'Flow must be in 3D arrays.'
height = flow.shape[0]
width = flow.shape[1]
channels = img.shape[2]
output = np.ones(
(height, width, channels), dtype=img.dtype) * filling_value
grid = np.indices((height, width)).swapaxes(0, 1).swapaxes(1, 2)
dx = grid[:, :, 0] + flow[:, :, 1]
dy = grid[:, :, 1] + flow[:, :, 0]
sx = np.floor(dx).astype(int)
sy = np.floor(dy).astype(int)
valid = (sx >= 0) & (sx < height - 1) & (sy >= 0) & (sy < width - 1)
if interpolate_mode == 'nearest':
output[valid, :] = img[dx[valid].round().astype(int),
dy[valid].round().astype(int), :]
elif interpolate_mode == 'bilinear':
# dirty walkround for integer positions
eps_ = 1e-6
dx, dy = dx + eps_, dy + eps_
left_top_ = img[np.floor(dx[valid]).astype(int),
np.floor(dy[valid]).astype(int), :] * (
np.ceil(dx[valid]) - dx[valid])[:, None] * (
np.ceil(dy[valid]) - dy[valid])[:, None]
left_down_ = img[np.ceil(dx[valid]).astype(int),
np.floor(dy[valid]).astype(int), :] * (
dx[valid] - np.floor(dx[valid]))[:, None] * (
np.ceil(dy[valid]) - dy[valid])[:, None]
right_top_ = img[np.floor(dx[valid]).astype(int),
np.ceil(dy[valid]).astype(int), :] * (
np.ceil(dx[valid]) - dx[valid])[:, None] * (
dy[valid] - np.floor(dy[valid]))[:, None]
right_down_ = img[np.ceil(dx[valid]).astype(int),
np.ceil(dy[valid]).astype(int), :] * (
dx[valid] - np.floor(dx[valid]))[:, None] * (
dy[valid] - np.floor(dy[valid]))[:, None]
output[valid, :] = left_top_ + left_down_ + right_top_ + right_down_
else:
raise NotImplementedError(
'We only support interpolation modes of nearest and bilinear, '
f'but got {interpolate_mode}.')
return output.astype(img.dtype)
def flow_from_bytes(content):
"""Read dense optical flow from bytes.
.. note::
This load optical flow function works for FlyingChairs, FlyingThings3D,
Sintel, FlyingChairsOcc datasets, but cannot load the data from
ChairsSDHom.
Args:
content (bytes): Optical flow bytes got from files or other streams.
Returns:
ndarray: Loaded optical flow with the shape (H, W, 2).
"""
# header in first 4 bytes
header = content[:4]
if header.decode('utf-8') != 'PIEH':
raise Exception('Flow file header does not contain PIEH')
# width in second 4 bytes
width = np.frombuffer(content[4:], np.int32, 1).squeeze()
# height in third 4 bytes
height = np.frombuffer(content[8:], np.int32, 1).squeeze()
# after first 12 bytes, all bytes are flow
flow = np.frombuffer(content[12:], np.float32, width * height * 2).reshape(
(height, width, 2))
return flow
def sparse_flow_from_bytes(content):
"""Read the optical flow in KITTI datasets from bytes.
This function is modified from RAFT load the `KITTI datasets
<https://github.com/princeton-vl/RAFT/blob/224320502d66c356d88e6c712f38129e60661e80/core/utils/frame_utils.py#L102>`_.
Args:
content (bytes): Optical flow bytes got from files or other streams.
Returns:
Tuple(ndarray, ndarray): Loaded optical flow with the shape (H, W, 2)
and flow valid mask with the shape (H, W).
""" # nopa
content = np.frombuffer(content, np.uint8)
flow = cv2.imdecode(content, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
flow = flow[:, :, ::-1].astype(np.float32)
# flow shape (H, W, 2) valid shape (H, W)
flow, valid = flow[:, :, :2], flow[:, :, 2]
flow = (flow - 2**15) / 64.0
return flow, valid