kirankunapuli's picture
Update app.py with Gemma Hinglish Inference
e0f9553 verified
raw
history blame
1.58 kB
import gradio as gr
# gr.load("models/kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0").launch()
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0")
model = AutoModelForCausalLM.from_pretrained("kirankunapuli/Gemma-2B-Hinglish-LORA-v1.0")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = model.to(device)
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
def get_response(input_text: str) -> str:
inputs = tokenizer(
[
alpaca_prompt.format(
"Please answer the following sentence as requested", # instruction
input_text, # input
"", # output - leave this blank for generation!
)
],
return_tensors="pt",
).to(device)
outputs = model.generate(**inputs, max_new_tokens=256)
output = tokenizer.batch_decode(outputs)[0]
response_pattern = re.compile(r"### Response:\n(.*?)<eos>", re.DOTALL)
response_match = response_pattern.search(output)
if response_match:
response = response_match.group(1).strip()
return response
else:
return "Response not found"
interface = gr.Interface(
fn=get_response,
inputs="text",
outputs="text",
title="Gemma Hinglish Model Inference",
)
interface.launch()