Spaces:
Sleeping
Sleeping
splitting out modules
Browse files- .gitignore +1 -0
- app.py +4 -54
- overview.py +68 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
import transformers as tf
|
3 |
-
import plotly.graph_objects as go
|
4 |
-
import matplotlib.cm as cm
|
5 |
import pandas as pd
|
6 |
|
|
|
|
|
7 |
|
8 |
# Function to load and cache models
|
9 |
@st.experimental_singleton(show_spinner=False)
|
@@ -85,55 +85,5 @@ tab_titles = ['Overview', 'Q1 - Level of Detail', 'Q2 - Suggestion Given', 'Q3 -
|
|
85 |
tabs = st.tabs(tab_titles)
|
86 |
|
87 |
with tabs[0]:
|
88 |
-
|
89 |
-
|
90 |
-
color = f'rgba({int(color[0]*256)}, {int(color[1]*256)}, {int(color[2]*256)}, {int(color[3]*256)})'
|
91 |
-
|
92 |
-
fig = go.Figure(go.Indicator(
|
93 |
-
domain = {'x': [0, 1], 'y': [0, 1]},
|
94 |
-
value = results['qual']['label'],
|
95 |
-
mode = "gauge+number",
|
96 |
-
title = {'text': "QuAL"},
|
97 |
-
gauge = {'axis': {'range': [None, 5]},
|
98 |
-
'bgcolor': 'lightgray',
|
99 |
-
'bar': {'color': color, 'thickness': 1.0},
|
100 |
-
|
101 |
-
}
|
102 |
-
), layout=go.Layout(margin=dict(t=0, b=135)))#, layout=go.Layout(width=750, height=300))# layout={'paper_bgcolor': 'rgb(245,245,245)'})#,
|
103 |
-
|
104 |
-
cols = st.columns([7, 3])
|
105 |
-
with cols[0]:
|
106 |
-
st.plotly_chart(fig, use_container_width=True)
|
107 |
-
with cols[1]:
|
108 |
-
|
109 |
-
|
110 |
-
# cols = st.columns(3)
|
111 |
-
# cols[0].markdown('#### Level of Detail')
|
112 |
-
q1lab = results['q1']['label']
|
113 |
-
if q1lab == 0:
|
114 |
-
md_str = 'π₯ None'
|
115 |
-
elif q1lab == 1:
|
116 |
-
md_str = 'π Low'
|
117 |
-
elif q1lab == 2:
|
118 |
-
md_str = 'π Medium'
|
119 |
-
elif q1lab == 3:
|
120 |
-
md_str = 'π High'
|
121 |
-
# cols[0].markdown(md_str)
|
122 |
-
cols[1].metric('Level of Detail', md_str,
|
123 |
-
help='How specific was the evaluator in describing the behavior?')
|
124 |
-
|
125 |
-
q2lab = results['q2i']['label']
|
126 |
-
if q2lab == 0:
|
127 |
-
md_str = 'β
Yes'
|
128 |
-
else:
|
129 |
-
md_str = 'β No'
|
130 |
-
cols[1].metric('Suggestion Given', (md_str),
|
131 |
-
help='Did the evaluator give a suggestion for improvement?')
|
132 |
-
|
133 |
-
q3lab = results['q3i']['label']
|
134 |
-
if q3lab == 0:
|
135 |
-
md_str = 'β
Yes'
|
136 |
-
else:
|
137 |
-
md_str = 'β No'
|
138 |
-
cols[1].metric('Suggestion Linked', md_str,
|
139 |
-
help='Is the suggestion for improvement linked to the described behavior?')
|
|
|
1 |
import streamlit as st
|
2 |
import transformers as tf
|
|
|
|
|
3 |
import pandas as pd
|
4 |
|
5 |
+
from overview import NQDOverview
|
6 |
+
|
7 |
|
8 |
# Function to load and cache models
|
9 |
@st.experimental_singleton(show_spinner=False)
|
|
|
85 |
tabs = st.tabs(tab_titles)
|
86 |
|
87 |
with tabs[0]:
|
88 |
+
overview = NQDOverview(st, results)
|
89 |
+
overview.draw()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
overview.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from matplotlib.cm import get_cmap
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
|
4 |
+
class NQDOverview(object):
|
5 |
+
def __init__(self, parent, results,
|
6 |
+
dial_cmap='RdYlGn'):
|
7 |
+
self.p = parent
|
8 |
+
self.results = results
|
9 |
+
self.cmap = get_cmap(dial_cmap)
|
10 |
+
|
11 |
+
def _get_color(self):
|
12 |
+
color = self.cmap(self.results['qual']['label'] / 6.0)
|
13 |
+
color = f'rgba({int(color[0]*256)}, {int(color[1]*256)}, {int(color[2]*256)}, {int(color[3]*256)})'
|
14 |
+
return color
|
15 |
+
|
16 |
+
def _build_figure(self):
|
17 |
+
color = self._get_color()
|
18 |
+
fig = go.Figure(go.Indicator(
|
19 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
20 |
+
value = self.results['qual']['label'],
|
21 |
+
mode = "gauge+number",
|
22 |
+
title = {'text': "QuAL"},
|
23 |
+
gauge = {'axis': {'range': [None, 5]},
|
24 |
+
'bgcolor': 'lightgray',
|
25 |
+
'bar': {'color': color, 'thickness': 1.0},
|
26 |
+
|
27 |
+
}
|
28 |
+
),
|
29 |
+
layout=go.Layout(margin=dict(t=0, b=135))
|
30 |
+
)
|
31 |
+
return fig
|
32 |
+
|
33 |
+
def draw(self):
|
34 |
+
st = self.p
|
35 |
+
|
36 |
+
fig = self._build_figure()
|
37 |
+
|
38 |
+
cols = st.columns([7, 3])
|
39 |
+
with cols[0]:
|
40 |
+
st.plotly_chart(fig, use_container_width=True)
|
41 |
+
with cols[1]:
|
42 |
+
q1lab = self.results['q1']['label']
|
43 |
+
if q1lab == 0:
|
44 |
+
md_str = 'π₯ None'
|
45 |
+
elif q1lab == 1:
|
46 |
+
md_str = 'π Low'
|
47 |
+
elif q1lab == 2:
|
48 |
+
md_str = 'π Medium'
|
49 |
+
elif q1lab == 3:
|
50 |
+
md_str = 'π High'
|
51 |
+
cols[1].metric('Level of Detail', md_str,
|
52 |
+
help='How specific was the evaluator in describing the behavior?')
|
53 |
+
|
54 |
+
q2lab = self.results['q2i']['label']
|
55 |
+
if q2lab == 0:
|
56 |
+
md_str = 'β
Yes'
|
57 |
+
else:
|
58 |
+
md_str = 'β No'
|
59 |
+
cols[1].metric('Suggestion Given', (md_str),
|
60 |
+
help='Did the evaluator give a suggestion for improvement?')
|
61 |
+
|
62 |
+
q3lab = self.results['q3i']['label']
|
63 |
+
if q3lab == 0:
|
64 |
+
md_str = 'β
Yes'
|
65 |
+
else:
|
66 |
+
md_str = 'β No'
|
67 |
+
cols[1].metric('Suggestion Linked', md_str,
|
68 |
+
help='Is the suggestion for improvement linked to the described behavior?')
|