kira4424's picture
Duplicate from lewiswu1209/MockingBird
d59aeff
raw
history blame
4.61 kB
import time
import os
import argparse
import torch
import numpy as np
import glob
from pathlib import Path
from tqdm import tqdm
from ppg_extractor import load_model
import librosa
import soundfile as sf
from utils.load_yaml import HpsYaml
from encoder.audio import preprocess_wav
from encoder import inference as speacker_encoder
from vocoder.hifigan import inference as vocoder
from ppg2mel import MelDecoderMOLv2
from utils.f0_utils import compute_f0, f02lf0, compute_mean_std, get_converted_lf0uv
def _build_ppg2mel_model(model_config, model_file, device):
ppg2mel_model = MelDecoderMOLv2(
**model_config["model"]
).to(device)
ckpt = torch.load(model_file, map_location=device)
ppg2mel_model.load_state_dict(ckpt["model"])
ppg2mel_model.eval()
return ppg2mel_model
@torch.no_grad()
def convert(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
step = os.path.basename(args.ppg2mel_model_file)[:-4].split("_")[-1]
# Build models
print("Load PPG-model, PPG2Mel-model, Vocoder-model...")
ppg_model = load_model(
Path('./ppg_extractor/saved_models/24epoch.pt'),
device,
)
ppg2mel_model = _build_ppg2mel_model(HpsYaml(args.ppg2mel_model_train_config), args.ppg2mel_model_file, device)
# vocoder.load_model('./vocoder/saved_models/pretrained/g_hifigan.pt', "./vocoder/hifigan/config_16k_.json")
vocoder.load_model('./vocoder/saved_models/24k/g_02830000.pt')
# Data related
ref_wav_path = args.ref_wav_path
ref_wav = preprocess_wav(ref_wav_path)
ref_fid = os.path.basename(ref_wav_path)[:-4]
# TODO: specify encoder
speacker_encoder.load_model(Path("encoder/saved_models/pretrained_bak_5805000.pt"))
ref_spk_dvec = speacker_encoder.embed_utterance(ref_wav)
ref_spk_dvec = torch.from_numpy(ref_spk_dvec).unsqueeze(0).to(device)
ref_lf0_mean, ref_lf0_std = compute_mean_std(f02lf0(compute_f0(ref_wav)))
source_file_list = sorted(glob.glob(f"{args.wav_dir}/*.wav"))
print(f"Number of source utterances: {len(source_file_list)}.")
total_rtf = 0.0
cnt = 0
for src_wav_path in tqdm(source_file_list):
# Load the audio to a numpy array:
src_wav, _ = librosa.load(src_wav_path, sr=16000)
src_wav_tensor = torch.from_numpy(src_wav).unsqueeze(0).float().to(device)
src_wav_lengths = torch.LongTensor([len(src_wav)]).to(device)
ppg = ppg_model(src_wav_tensor, src_wav_lengths)
lf0_uv = get_converted_lf0uv(src_wav, ref_lf0_mean, ref_lf0_std, convert=True)
min_len = min(ppg.shape[1], len(lf0_uv))
ppg = ppg[:, :min_len]
lf0_uv = lf0_uv[:min_len]
start = time.time()
_, mel_pred, att_ws = ppg2mel_model.inference(
ppg,
logf0_uv=torch.from_numpy(lf0_uv).unsqueeze(0).float().to(device),
spembs=ref_spk_dvec,
)
src_fid = os.path.basename(src_wav_path)[:-4]
wav_fname = f"{output_dir}/vc_{src_fid}_ref_{ref_fid}_step{step}.wav"
mel_len = mel_pred.shape[0]
rtf = (time.time() - start) / (0.01 * mel_len)
total_rtf += rtf
cnt += 1
# continue
mel_pred= mel_pred.transpose(0, 1)
y, output_sample_rate = vocoder.infer_waveform(mel_pred.cpu())
sf.write(wav_fname, y.squeeze(), output_sample_rate, "PCM_16")
print("RTF:")
print(total_rtf / cnt)
def get_parser():
parser = argparse.ArgumentParser(description="Conversion from wave input")
parser.add_argument(
"--wav_dir",
type=str,
default=None,
required=True,
help="Source wave directory.",
)
parser.add_argument(
"--ref_wav_path",
type=str,
required=True,
help="Reference wave file path.",
)
parser.add_argument(
"--ppg2mel_model_train_config", "-c",
type=str,
default=None,
required=True,
help="Training config file (yaml file)",
)
parser.add_argument(
"--ppg2mel_model_file", "-m",
type=str,
default=None,
required=True,
help="ppg2mel model checkpoint file path"
)
parser.add_argument(
"--output_dir", "-o",
type=str,
default="vc_gens_vctk_oneshot",
help="Output folder to save the converted wave."
)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
convert(args)
if __name__ == "__main__":
main()