|
import spaces
|
|
|
|
import os
|
|
import requests
|
|
import time
|
|
|
|
import torch
|
|
|
|
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
from diffusers.models import AutoencoderKL
|
|
from diffusers.models.attention_processor import AttnProcessor2_0
|
|
|
|
from PIL import Image
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from RealESRGAN import RealESRGAN
|
|
|
|
import gradio as gr
|
|
from gradio_imageslider import ImageSlider
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
USE_TORCH_COMPILE = False
|
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
def download_models():
|
|
models = {
|
|
"MODEL": ("dantea1118/juggernaut_reborn", "juggernaut_reborn.safetensors", "models/models/Stable-diffusion"),
|
|
"UPSCALER_X2": ("ai-forever/Real-ESRGAN", "RealESRGAN_x2.pth", "models/upscalers/"),
|
|
"UPSCALER_X4": ("ai-forever/Real-ESRGAN", "RealESRGAN_x4.pth", "models/upscalers/"),
|
|
"NEGATIVE_1": ("philz1337x/embeddings", "verybadimagenegative_v1.3.pt", "models/embeddings"),
|
|
"NEGATIVE_2": ("philz1337x/embeddings", "JuggernautNegative-neg.pt", "models/embeddings"),
|
|
"LORA_1": ("philz1337x/loras", "SDXLrender_v2.0.safetensors", "models/Lora"),
|
|
"LORA_2": ("philz1337x/loras", "more_details.safetensors", "models/Lora"),
|
|
"CONTROLNET": ("lllyasviel/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet"),
|
|
"VAE": ("stabilityai/sd-vae-ft-mse-original", "vae-ft-mse-840000-ema-pruned.safetensors", "models/VAE"),
|
|
}
|
|
|
|
for model, (repo_id, filename, local_dir) in models.items():
|
|
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
|
|
|
|
download_models()
|
|
|
|
def timer_func(func):
|
|
def wrapper(*args, **kwargs):
|
|
start_time = time.time()
|
|
result = func(*args, **kwargs)
|
|
end_time = time.time()
|
|
print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
|
|
return result
|
|
return wrapper
|
|
|
|
class LazyLoadPipeline:
|
|
def __init__(self):
|
|
self.pipe = None
|
|
|
|
@timer_func
|
|
def load(self):
|
|
if self.pipe is None:
|
|
print("Starting to load the pipeline...")
|
|
self.pipe = self.setup_pipeline()
|
|
print(f"Moving pipeline to device: {device}")
|
|
self.pipe.to(device)
|
|
if USE_TORCH_COMPILE:
|
|
print("Compiling the model...")
|
|
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
|
@timer_func
|
|
def setup_pipeline(self):
|
|
print("Setting up the pipeline...")
|
|
controlnet = ControlNetModel.from_single_file(
|
|
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
|
)
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
|
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
|
|
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
|
|
model_path,
|
|
controlnet=controlnet,
|
|
torch_dtype=torch.float16,
|
|
use_safetensors=True,
|
|
safety_checker=safety_checker
|
|
)
|
|
vae = AutoencoderKL.from_single_file(
|
|
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
|
|
torch_dtype=torch.float16
|
|
)
|
|
pipe.vae = vae
|
|
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
|
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
|
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
|
pipe.fuse_lora(lora_scale=0.5)
|
|
pipe.load_lora_weights("models/Lora/more_details.safetensors")
|
|
pipe.fuse_lora(lora_scale=1.)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
|
return pipe
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.pipe(*args, **kwargs)
|
|
|
|
class LazyRealESRGAN:
|
|
def __init__(self, device, scale):
|
|
self.device = device
|
|
self.scale = scale
|
|
self.model = None
|
|
|
|
def load_model(self):
|
|
if self.model is None:
|
|
self.model = RealESRGAN(self.device, scale=self.scale)
|
|
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
|
|
def predict(self, img):
|
|
self.load_model()
|
|
return self.model.predict(img)
|
|
|
|
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
|
|
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
|
|
|
|
@timer_func
|
|
def resize_and_upscale(input_image, resolution):
|
|
scale = 2 if resolution <= 2048 else 4
|
|
input_image = input_image.convert("RGB")
|
|
W, H = input_image.size
|
|
k = float(resolution) / min(H, W)
|
|
H = int(round(H * k / 64.0)) * 64
|
|
W = int(round(W * k / 64.0)) * 64
|
|
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
|
if scale == 2:
|
|
img = lazy_realesrgan_x2.predict(img)
|
|
else:
|
|
img = lazy_realesrgan_x4.predict(img)
|
|
return img
|
|
|
|
@timer_func
|
|
def create_hdr_effect(original_image, hdr):
|
|
if hdr == 0:
|
|
return original_image
|
|
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
|
|
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
|
|
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
|
|
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
|
|
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
|
|
merge_mertens = cv2.createMergeMertens()
|
|
hdr_image = merge_mertens.process(images)
|
|
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
|
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
|
|
|
lazy_pipe = LazyLoadPipeline()
|
|
lazy_pipe.load()
|
|
|
|
def prepare_image(input_image, resolution, hdr):
|
|
condition_image = resize_and_upscale(input_image, resolution)
|
|
condition_image = create_hdr_effect(condition_image, hdr)
|
|
return condition_image
|
|
|
|
@spaces.GPU
|
|
@timer_func
|
|
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
|
print("Starting image processing...")
|
|
torch.cuda.empty_cache()
|
|
|
|
condition_image = prepare_image(input_image, resolution, hdr)
|
|
|
|
prompt = "masterpiece, best quality, highres"
|
|
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
|
|
|
options = {
|
|
"prompt": prompt,
|
|
"negative_prompt": negative_prompt,
|
|
"image": condition_image,
|
|
"control_image": condition_image,
|
|
"width": condition_image.size[0],
|
|
"height": condition_image.size[1],
|
|
"strength": strength,
|
|
"num_inference_steps": num_inference_steps,
|
|
"guidance_scale": guidance_scale,
|
|
"generator": torch.Generator(device=device).manual_seed(0),
|
|
}
|
|
|
|
print("Running inference...")
|
|
result = lazy_pipe(**options).images[0]
|
|
print("Image processing completed successfully")
|
|
|
|
|
|
input_array = np.array(input_image)
|
|
result_array = np.array(result)
|
|
|
|
return [input_array, result_array]
|
|
|
|
title = """<h1 align="center"></p>
|
|
<p><center>
|
|
|
|
</center></p>
|
|
"""
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.HTML(title)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(type="pil", label="Input Image")
|
|
run_button = gr.Button("Enhance Image")
|
|
with gr.Column():
|
|
output_slider = ImageSlider(label="Before / After", type="numpy")
|
|
with gr.Accordion("Advanced Options", open=False):
|
|
resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
|
|
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
|
|
strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
|
|
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
|
|
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
|
|
|
|
run_button.click(fn=gradio_process_image,
|
|
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
|
|
outputs=output_slider)
|
|
|
|
|
|
gr.Examples(
|
|
examples=[
|
|
["image1.jpg", 512, 20, 0.4, 0, 3],
|
|
["image2.png", 512, 20, 0.4, 0, 3],
|
|
["image3.png", 512, 20, 0.4, 0, 3],
|
|
],
|
|
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
|
|
outputs=output_slider,
|
|
fn=gradio_process_image,
|
|
cache_examples=True,
|
|
)
|
|
|
|
demo.launch(share=True) |