Spaces:
Runtime error
Runtime error
final
Browse files
app.py
CHANGED
@@ -8,8 +8,8 @@ feature_extractor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-101
|
|
8 |
dmodel = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101")
|
9 |
|
10 |
i1 = gr.inputs.Image(type="pil", label="Input image")
|
11 |
-
i2 = gr.inputs.Number(default=400, label="Custom Width
|
12 |
-
i3 = gr.inputs.Number(default=400, label="Custom Height
|
13 |
o1 = gr.outputs.Image(type="pil", label="Cropped part")
|
14 |
|
15 |
def extract_image(image, custom_width, custom_height):
|
@@ -45,13 +45,10 @@ def extract_image(image, custom_width, custom_height):
|
|
45 |
ymax = min(image.height, ymax)
|
46 |
|
47 |
cropped_image = image.crop((xmin, ymin, xmax, ymax))
|
48 |
-
|
49 |
-
# Return the coordinates of the cropped area
|
50 |
-
coordinates = f"xmin: {xmin}, ymin: {ymin}, xmax: {xmax}, ymax: {ymax}"
|
51 |
|
52 |
return cropped_image
|
53 |
|
54 |
-
title = "
|
55 |
-
description = "<p style='color:
|
56 |
examples = [['ex3.jpg', 800, 400], ['cat.png', 400, 400]]
|
57 |
gr.Interface(fn=extract_image, inputs=[i1, i2, i3], outputs=[o1], title=title, description=description, examples=examples, enable_queue=True).launch()
|
|
|
8 |
dmodel = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101")
|
9 |
|
10 |
i1 = gr.inputs.Image(type="pil", label="Input image")
|
11 |
+
i2 = gr.inputs.Number(default=400, label="Custom Width")
|
12 |
+
i3 = gr.inputs.Number(default=400, label="Custom Height")
|
13 |
o1 = gr.outputs.Image(type="pil", label="Cropped part")
|
14 |
|
15 |
def extract_image(image, custom_width, custom_height):
|
|
|
45 |
ymax = min(image.height, ymax)
|
46 |
|
47 |
cropped_image = image.crop((xmin, ymin, xmax, ymax))
|
|
|
|
|
|
|
48 |
|
49 |
return cropped_image
|
50 |
|
51 |
+
title = "Auto Crop"
|
52 |
+
description = "<p style='color:black'>Crop an image with the area containing the most detected objects. </p>"
|
53 |
examples = [['ex3.jpg', 800, 400], ['cat.png', 400, 400]]
|
54 |
gr.Interface(fn=extract_image, inputs=[i1, i2, i3], outputs=[o1], title=title, description=description, examples=examples, enable_queue=True).launch()
|