Spaces:
Runtime error
Runtime error
import numpy as np | |
from tqdm import trange | |
import modules.scripts as scripts | |
import gradio as gr | |
from modules import processing, shared, sd_samplers, images | |
from modules.processing import Processed | |
from modules.sd_samplers import samplers | |
from modules.shared import opts, cmd_opts, state | |
from modules import deepbooru | |
class Script(scripts.Script): | |
def title(self): | |
return "Loopback" | |
def show(self, is_img2img): | |
return is_img2img | |
def ui(self, is_img2img): | |
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops")) | |
denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, elem_id=self.elem_id("denoising_strength_change_factor")) | |
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None") | |
return [loops, denoising_strength_change_factor, append_interrogation] | |
def run(self, p, loops, denoising_strength_change_factor, append_interrogation): | |
processing.fix_seed(p) | |
batch_count = p.n_iter | |
p.extra_generation_params = { | |
"Denoising strength change factor": denoising_strength_change_factor, | |
} | |
p.batch_size = 1 | |
p.n_iter = 1 | |
output_images, info = None, None | |
initial_seed = None | |
initial_info = None | |
grids = [] | |
all_images = [] | |
original_init_image = p.init_images | |
original_prompt = p.prompt | |
state.job_count = loops * batch_count | |
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] | |
for n in range(batch_count): | |
history = [] | |
# Reset to original init image at the start of each batch | |
p.init_images = original_init_image | |
for i in range(loops): | |
p.n_iter = 1 | |
p.batch_size = 1 | |
p.do_not_save_grid = True | |
if opts.img2img_color_correction: | |
p.color_corrections = initial_color_corrections | |
if append_interrogation != "None": | |
p.prompt = original_prompt + ", " if original_prompt != "" else "" | |
if append_interrogation == "CLIP": | |
p.prompt += shared.interrogator.interrogate(p.init_images[0]) | |
elif append_interrogation == "DeepBooru": | |
p.prompt += deepbooru.model.tag(p.init_images[0]) | |
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}" | |
processed = processing.process_images(p) | |
if initial_seed is None: | |
initial_seed = processed.seed | |
initial_info = processed.info | |
init_img = processed.images[0] | |
p.init_images = [init_img] | |
p.seed = processed.seed + 1 | |
p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1) | |
history.append(processed.images[0]) | |
grid = images.image_grid(history, rows=1) | |
if opts.grid_save: | |
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p) | |
grids.append(grid) | |
all_images += history | |
if opts.return_grid: | |
all_images = grids + all_images | |
processed = Processed(p, all_images, initial_seed, initial_info) | |
return processed | |