Spaces:
Runtime error
Runtime error
import cv2 | |
import requests | |
import os | |
from collections import defaultdict | |
from math import log, sqrt | |
import numpy as np | |
from PIL import Image, ImageDraw | |
GREEN = "#0F0" | |
BLUE = "#00F" | |
RED = "#F00" | |
def crop_image(im, settings): | |
""" Intelligently crop an image to the subject matter """ | |
scale_by = 1 | |
if is_landscape(im.width, im.height): | |
scale_by = settings.crop_height / im.height | |
elif is_portrait(im.width, im.height): | |
scale_by = settings.crop_width / im.width | |
elif is_square(im.width, im.height): | |
if is_square(settings.crop_width, settings.crop_height): | |
scale_by = settings.crop_width / im.width | |
elif is_landscape(settings.crop_width, settings.crop_height): | |
scale_by = settings.crop_width / im.width | |
elif is_portrait(settings.crop_width, settings.crop_height): | |
scale_by = settings.crop_height / im.height | |
im = im.resize((int(im.width * scale_by), int(im.height * scale_by))) | |
im_debug = im.copy() | |
focus = focal_point(im_debug, settings) | |
# take the focal point and turn it into crop coordinates that try to center over the focal | |
# point but then get adjusted back into the frame | |
y_half = int(settings.crop_height / 2) | |
x_half = int(settings.crop_width / 2) | |
x1 = focus.x - x_half | |
if x1 < 0: | |
x1 = 0 | |
elif x1 + settings.crop_width > im.width: | |
x1 = im.width - settings.crop_width | |
y1 = focus.y - y_half | |
if y1 < 0: | |
y1 = 0 | |
elif y1 + settings.crop_height > im.height: | |
y1 = im.height - settings.crop_height | |
x2 = x1 + settings.crop_width | |
y2 = y1 + settings.crop_height | |
crop = [x1, y1, x2, y2] | |
results = [] | |
results.append(im.crop(tuple(crop))) | |
if settings.annotate_image: | |
d = ImageDraw.Draw(im_debug) | |
rect = list(crop) | |
rect[2] -= 1 | |
rect[3] -= 1 | |
d.rectangle(rect, outline=GREEN) | |
results.append(im_debug) | |
if settings.destop_view_image: | |
im_debug.show() | |
return results | |
def focal_point(im, settings): | |
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else [] | |
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else [] | |
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else [] | |
pois = [] | |
weight_pref_total = 0 | |
if len(corner_points) > 0: | |
weight_pref_total += settings.corner_points_weight | |
if len(entropy_points) > 0: | |
weight_pref_total += settings.entropy_points_weight | |
if len(face_points) > 0: | |
weight_pref_total += settings.face_points_weight | |
corner_centroid = None | |
if len(corner_points) > 0: | |
corner_centroid = centroid(corner_points) | |
corner_centroid.weight = settings.corner_points_weight / weight_pref_total | |
pois.append(corner_centroid) | |
entropy_centroid = None | |
if len(entropy_points) > 0: | |
entropy_centroid = centroid(entropy_points) | |
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total | |
pois.append(entropy_centroid) | |
face_centroid = None | |
if len(face_points) > 0: | |
face_centroid = centroid(face_points) | |
face_centroid.weight = settings.face_points_weight / weight_pref_total | |
pois.append(face_centroid) | |
average_point = poi_average(pois, settings) | |
if settings.annotate_image: | |
d = ImageDraw.Draw(im) | |
max_size = min(im.width, im.height) * 0.07 | |
if corner_centroid is not None: | |
color = BLUE | |
box = corner_centroid.bounding(max_size * corner_centroid.weight) | |
d.text((box[0], box[1]-15), "Edge: %.02f" % corner_centroid.weight, fill=color) | |
d.ellipse(box, outline=color) | |
if len(corner_points) > 1: | |
for f in corner_points: | |
d.rectangle(f.bounding(4), outline=color) | |
if entropy_centroid is not None: | |
color = "#ff0" | |
box = entropy_centroid.bounding(max_size * entropy_centroid.weight) | |
d.text((box[0], box[1]-15), "Entropy: %.02f" % entropy_centroid.weight, fill=color) | |
d.ellipse(box, outline=color) | |
if len(entropy_points) > 1: | |
for f in entropy_points: | |
d.rectangle(f.bounding(4), outline=color) | |
if face_centroid is not None: | |
color = RED | |
box = face_centroid.bounding(max_size * face_centroid.weight) | |
d.text((box[0], box[1]-15), "Face: %.02f" % face_centroid.weight, fill=color) | |
d.ellipse(box, outline=color) | |
if len(face_points) > 1: | |
for f in face_points: | |
d.rectangle(f.bounding(4), outline=color) | |
d.ellipse(average_point.bounding(max_size), outline=GREEN) | |
return average_point | |
def image_face_points(im, settings): | |
if settings.dnn_model_path is not None: | |
detector = cv2.FaceDetectorYN.create( | |
settings.dnn_model_path, | |
"", | |
(im.width, im.height), | |
0.9, # score threshold | |
0.3, # nms threshold | |
5000 # keep top k before nms | |
) | |
faces = detector.detect(np.array(im)) | |
results = [] | |
if faces[1] is not None: | |
for face in faces[1]: | |
x = face[0] | |
y = face[1] | |
w = face[2] | |
h = face[3] | |
results.append( | |
PointOfInterest( | |
int(x + (w * 0.5)), # face focus left/right is center | |
int(y + (h * 0.33)), # face focus up/down is close to the top of the head | |
size = w, | |
weight = 1/len(faces[1]) | |
) | |
) | |
return results | |
else: | |
np_im = np.array(im) | |
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) | |
tries = [ | |
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], | |
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], | |
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], | |
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], | |
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], | |
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], | |
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], | |
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] | |
] | |
for t in tries: | |
classifier = cv2.CascadeClassifier(t[0]) | |
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side | |
try: | |
faces = classifier.detectMultiScale(gray, scaleFactor=1.1, | |
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) | |
except: | |
continue | |
if len(faces) > 0: | |
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] | |
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects] | |
return [] | |
def image_corner_points(im, settings): | |
grayscale = im.convert("L") | |
# naive attempt at preventing focal points from collecting at watermarks near the bottom | |
gd = ImageDraw.Draw(grayscale) | |
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") | |
np_im = np.array(grayscale) | |
points = cv2.goodFeaturesToTrack( | |
np_im, | |
maxCorners=100, | |
qualityLevel=0.04, | |
minDistance=min(grayscale.width, grayscale.height)*0.06, | |
useHarrisDetector=False, | |
) | |
if points is None: | |
return [] | |
focal_points = [] | |
for point in points: | |
x, y = point.ravel() | |
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points))) | |
return focal_points | |
def image_entropy_points(im, settings): | |
landscape = im.height < im.width | |
portrait = im.height > im.width | |
if landscape: | |
move_idx = [0, 2] | |
move_max = im.size[0] | |
elif portrait: | |
move_idx = [1, 3] | |
move_max = im.size[1] | |
else: | |
return [] | |
e_max = 0 | |
crop_current = [0, 0, settings.crop_width, settings.crop_height] | |
crop_best = crop_current | |
while crop_current[move_idx[1]] < move_max: | |
crop = im.crop(tuple(crop_current)) | |
e = image_entropy(crop) | |
if (e > e_max): | |
e_max = e | |
crop_best = list(crop_current) | |
crop_current[move_idx[0]] += 4 | |
crop_current[move_idx[1]] += 4 | |
x_mid = int(crop_best[0] + settings.crop_width/2) | |
y_mid = int(crop_best[1] + settings.crop_height/2) | |
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)] | |
def image_entropy(im): | |
# greyscale image entropy | |
# band = np.asarray(im.convert("L")) | |
band = np.asarray(im.convert("1"), dtype=np.uint8) | |
hist, _ = np.histogram(band, bins=range(0, 256)) | |
hist = hist[hist > 0] | |
return -np.log2(hist / hist.sum()).sum() | |
def centroid(pois): | |
x = [poi.x for poi in pois] | |
y = [poi.y for poi in pois] | |
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois)) | |
def poi_average(pois, settings): | |
weight = 0.0 | |
x = 0.0 | |
y = 0.0 | |
for poi in pois: | |
weight += poi.weight | |
x += poi.x * poi.weight | |
y += poi.y * poi.weight | |
avg_x = round(weight and x / weight) | |
avg_y = round(weight and y / weight) | |
return PointOfInterest(avg_x, avg_y) | |
def is_landscape(w, h): | |
return w > h | |
def is_portrait(w, h): | |
return h > w | |
def is_square(w, h): | |
return w == h | |
def download_and_cache_models(dirname): | |
download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true' | |
model_file_name = 'face_detection_yunet.onnx' | |
if not os.path.exists(dirname): | |
os.makedirs(dirname) | |
cache_file = os.path.join(dirname, model_file_name) | |
if not os.path.exists(cache_file): | |
print(f"downloading face detection model from '{download_url}' to '{cache_file}'") | |
response = requests.get(download_url) | |
with open(cache_file, "wb") as f: | |
f.write(response.content) | |
if os.path.exists(cache_file): | |
return cache_file | |
return None | |
class PointOfInterest: | |
def __init__(self, x, y, weight=1.0, size=10): | |
self.x = x | |
self.y = y | |
self.weight = weight | |
self.size = size | |
def bounding(self, size): | |
return [ | |
self.x - size//2, | |
self.y - size//2, | |
self.x + size//2, | |
self.y + size//2 | |
] | |
class Settings: | |
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None): | |
self.crop_width = crop_width | |
self.crop_height = crop_height | |
self.corner_points_weight = corner_points_weight | |
self.entropy_points_weight = entropy_points_weight | |
self.face_points_weight = face_points_weight | |
self.annotate_image = annotate_image | |
self.destop_view_image = False | |
self.dnn_model_path = dnn_model_path | |