Spaces:
Runtime error
Runtime error
import glob | |
import os | |
import re | |
import torch | |
from modules import shared, devices, sd_models | |
re_digits = re.compile(r"\d+") | |
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)") | |
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)") | |
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)") | |
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)") | |
def convert_diffusers_name_to_compvis(key): | |
def match(match_list, regex): | |
r = re.match(regex, key) | |
if not r: | |
return False | |
match_list.clear() | |
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) | |
return True | |
m = [] | |
if match(m, re_unet_down_blocks): | |
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}" | |
if match(m, re_unet_mid_blocks): | |
return f"diffusion_model_middle_block_1_{m[1]}" | |
if match(m, re_unet_up_blocks): | |
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}" | |
if match(m, re_text_block): | |
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" | |
return key | |
class LoraOnDisk: | |
def __init__(self, name, filename): | |
self.name = name | |
self.filename = filename | |
class LoraModule: | |
def __init__(self, name): | |
self.name = name | |
self.multiplier = 1.0 | |
self.modules = {} | |
self.mtime = None | |
class LoraUpDownModule: | |
def __init__(self): | |
self.up = None | |
self.down = None | |
self.alpha = None | |
def assign_lora_names_to_compvis_modules(sd_model): | |
lora_layer_mapping = {} | |
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): | |
lora_name = name.replace(".", "_") | |
lora_layer_mapping[lora_name] = module | |
module.lora_layer_name = lora_name | |
for name, module in shared.sd_model.model.named_modules(): | |
lora_name = name.replace(".", "_") | |
lora_layer_mapping[lora_name] = module | |
module.lora_layer_name = lora_name | |
sd_model.lora_layer_mapping = lora_layer_mapping | |
def load_lora(name, filename): | |
lora = LoraModule(name) | |
lora.mtime = os.path.getmtime(filename) | |
sd = sd_models.read_state_dict(filename) | |
keys_failed_to_match = [] | |
for key_diffusers, weight in sd.items(): | |
fullkey = convert_diffusers_name_to_compvis(key_diffusers) | |
key, lora_key = fullkey.split(".", 1) | |
sd_module = shared.sd_model.lora_layer_mapping.get(key, None) | |
if sd_module is None: | |
keys_failed_to_match.append(key_diffusers) | |
continue | |
lora_module = lora.modules.get(key, None) | |
if lora_module is None: | |
lora_module = LoraUpDownModule() | |
lora.modules[key] = lora_module | |
if lora_key == "alpha": | |
lora_module.alpha = weight.item() | |
continue | |
if type(sd_module) == torch.nn.Linear: | |
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) | |
elif type(sd_module) == torch.nn.Conv2d: | |
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) | |
else: | |
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' | |
with torch.no_grad(): | |
module.weight.copy_(weight) | |
module.to(device=devices.device, dtype=devices.dtype) | |
if lora_key == "lora_up.weight": | |
lora_module.up = module | |
elif lora_key == "lora_down.weight": | |
lora_module.down = module | |
else: | |
assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha' | |
if len(keys_failed_to_match) > 0: | |
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}") | |
return lora | |
def load_loras(names, multipliers=None): | |
already_loaded = {} | |
for lora in loaded_loras: | |
if lora.name in names: | |
already_loaded[lora.name] = lora | |
loaded_loras.clear() | |
loras_on_disk = [available_loras.get(name, None) for name in names] | |
if any([x is None for x in loras_on_disk]): | |
list_available_loras() | |
loras_on_disk = [available_loras.get(name, None) for name in names] | |
for i, name in enumerate(names): | |
lora = already_loaded.get(name, None) | |
lora_on_disk = loras_on_disk[i] | |
if lora_on_disk is not None: | |
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime: | |
lora = load_lora(name, lora_on_disk.filename) | |
if lora is None: | |
print(f"Couldn't find Lora with name {name}") | |
continue | |
lora.multiplier = multipliers[i] if multipliers else 1.0 | |
loaded_loras.append(lora) | |
def lora_forward(module, input, res): | |
if len(loaded_loras) == 0: | |
return res | |
lora_layer_name = getattr(module, 'lora_layer_name', None) | |
for lora in loaded_loras: | |
module = lora.modules.get(lora_layer_name, None) | |
if module is not None: | |
if shared.opts.lora_apply_to_outputs and res.shape == input.shape: | |
res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) | |
else: | |
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) | |
return res | |
def lora_Linear_forward(self, input): | |
return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input)) | |
def lora_Conv2d_forward(self, input): | |
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input)) | |
def list_available_loras(): | |
available_loras.clear() | |
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) | |
candidates = \ | |
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \ | |
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \ | |
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True) | |
for filename in sorted(candidates): | |
if os.path.isdir(filename): | |
continue | |
name = os.path.splitext(os.path.basename(filename))[0] | |
available_loras[name] = LoraOnDisk(name, filename) | |
available_loras = {} | |
loaded_loras = [] | |
list_available_loras() | |