Spaces:
Paused
Paused
Abid
commited on
Commit
•
f43d01b
1
Parent(s):
e706d2b
DVC added and working webapp with inference
Browse files- Aptfile +1 -0
- DVC-heroku-deployment.md +21 -0
- app/app_savta.py +57 -11
- requirements.txt +3 -3
Aptfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
https://github.com/iterative/dvc/releases/download/2.8.3/dvc_2.8.3_amd64.deb
|
DVC-heroku-deployment.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
We need to give Heroku the ability to pull in data from DVC upon app start up. We will install a [buildpack](https://elements.heroku.com/buildpacks/heroku/heroku-buildpack-apt) that allows the installation of apt-files and then define the Aptfile that contains a path to DVC. I.e., in the CLI run:
|
2 |
+
|
3 |
+
```
|
4 |
+
heroku buildpacks:add --index 1 heroku-community/apt
|
5 |
+
```
|
6 |
+
|
7 |
+
Then in your root project folder create a file called `Aptfile` that specifies the release of DVC you want installed, https://github.com/iterative/dvc/releases/download/2.8.3/dvc_2.8.3_amd64.deb
|
8 |
+
|
9 |
+
Add the following code block to your **streamlit_app.py**:
|
10 |
+
|
11 |
+
```python
|
12 |
+
import os
|
13 |
+
|
14 |
+
if "DYNO" in os.environ and os.path.isdir(".dvc"):
|
15 |
+
os.system("dvc config core.no_scm true")
|
16 |
+
if os.system(f"dvc pull {model} {image}") != 0:
|
17 |
+
exit("dvc pull failed")
|
18 |
+
os.system("rm -r .dvc .apt/usr/lib/dvc")
|
19 |
+
```
|
20 |
+
|
21 |
+
Reference: [Heroku ML](https://github.com/GuilhermeBrejeiro/deploy_ML_model_Heroku_FastAPI)
|
app/app_savta.py
CHANGED
@@ -1,9 +1,61 @@
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import sys
|
|
|
4 |
from fastai.vision.all import *
|
5 |
import gradio as gr
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
title = "SavtaDepth WebApp"
|
8 |
description = "Savta Depth is a collaborative Open Source Data Science project for monocular depth estimation - Turn 2d photos into 3d photos. To test the model and code please check out the link bellow."
|
9 |
article = "<p style='text-align: center'><a href='https://dagshub.com/OperationSavta/SavtaDepth' target='_blank'>SavtaDepth Project from OperationSavta</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1XU4DgQ217_hUMU1dllppeQNw3pTRlHy1?usp=sharing' target='_blank'>Google Colab Demo</a></p></center></p>"
|
@@ -14,22 +66,16 @@ examples = [
|
|
14 |
]
|
15 |
favicon = "examples/favicon.ico"
|
16 |
thumbnail = "examples/SavtaDepth.png"
|
17 |
-
learner = unet_learner(resnet34, path='src/')
|
18 |
-
learner.load('model')
|
19 |
-
def sepia(input_img):
|
20 |
-
sepia_filter = np.array(
|
21 |
-
[[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]
|
22 |
-
)
|
23 |
-
sepia_img = input_img.dot(sepia_filter.T)
|
24 |
-
sepia_img /= sepia_img.max()
|
25 |
-
return sepia_img
|
26 |
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
def main():
|
30 |
-
iface = gr.Interface(sepia, gr.inputs.Image(shape=(640,480)), "image", title = title, description = description, article = article, examples = examples,theme ="peach",thumbnail=thumbnail)
|
31 |
|
32 |
-
iface.launch(favicon_path=favicon,
|
33 |
# enable_queue=True,auth=("admin", "pass1234")
|
34 |
|
35 |
if __name__ == '__main__':
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import sys
|
4 |
+
import os
|
5 |
from fastai.vision.all import *
|
6 |
import gradio as gr
|
7 |
|
8 |
+
############## DVC ################################
|
9 |
+
|
10 |
+
PROD_MODEL_PATH = "src/models"
|
11 |
+
TRAIN_PATH = "src/data/processed/train/bathroom"
|
12 |
+
TEST_PATH = ""src/data/processed/test/bathroom""
|
13 |
+
|
14 |
+
if "DYNO" in os.environ and os.path.isdir(".dvc"):
|
15 |
+
print("Running DVC")
|
16 |
+
os.system("dvc config cache.type copy")
|
17 |
+
os.system("dvc config core.no_scm true")
|
18 |
+
if os.system(f"dvc pull {PROD_MODEL_PATH} {TRAIN_PATH } {TEST_PATH }") != 0:
|
19 |
+
exit("dvc pull failed")
|
20 |
+
os.system("rm -r .dvc .apt/usr/lib/dvc")
|
21 |
+
|
22 |
+
|
23 |
+
############## Inference ##############################
|
24 |
+
|
25 |
+
class ImageImageDataLoaders(DataLoaders):
|
26 |
+
"""Basic wrapper around several `DataLoader`s with factory methods for Image to Image problems"""
|
27 |
+
@classmethod
|
28 |
+
@delegates(DataLoaders.from_dblock)
|
29 |
+
def from_label_func(cls, path, filenames, label_func, valid_pct=0.2, seed=None, item_transforms=None,
|
30 |
+
batch_transforms=None, **kwargs):
|
31 |
+
"""Create from list of `fnames` in `path`s with `label_func`."""
|
32 |
+
datablock = DataBlock(blocks=(ImageBlock(cls=PILImage), ImageBlock(cls=PILImageBW)),
|
33 |
+
get_y=label_func,
|
34 |
+
splitter=RandomSplitter(valid_pct, seed=seed),
|
35 |
+
item_tfms=item_transforms,
|
36 |
+
batch_tfms=batch_transforms)
|
37 |
+
res = cls.from_dblock(datablock, filenames, path=path, **kwargs)
|
38 |
+
return res
|
39 |
+
|
40 |
+
|
41 |
+
def get_y_fn(x):
|
42 |
+
y = str(x.absolute()).replace('.jpg', '_depth.png')
|
43 |
+
y = Path(y)
|
44 |
+
|
45 |
+
return y
|
46 |
+
|
47 |
+
|
48 |
+
def create_data(data_path):
|
49 |
+
fnames = get_files(data_path/'train', extensions='.jpg')
|
50 |
+
data = ImageImageDataLoaders.from_label_func(data_path/'train', seed=42, bs=4, num_workers=0, filenames=fnames, label_func=get_y_fn)
|
51 |
+
return data
|
52 |
+
|
53 |
+
data = create_data(Path('src/data/processed'))
|
54 |
+
learner = unet_learner(data,resnet34, metrics=rmse, wd=1e-2, n_out=3, loss_func=MSELossFlat(), path='src/')
|
55 |
+
learner.load('model')
|
56 |
+
|
57 |
+
################### Gradio Web APP ################################
|
58 |
+
|
59 |
title = "SavtaDepth WebApp"
|
60 |
description = "Savta Depth is a collaborative Open Source Data Science project for monocular depth estimation - Turn 2d photos into 3d photos. To test the model and code please check out the link bellow."
|
61 |
article = "<p style='text-align: center'><a href='https://dagshub.com/OperationSavta/SavtaDepth' target='_blank'>SavtaDepth Project from OperationSavta</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1XU4DgQ217_hUMU1dllppeQNw3pTRlHy1?usp=sharing' target='_blank'>Google Colab Demo</a></p></center></p>"
|
|
|
66 |
]
|
67 |
favicon = "examples/favicon.ico"
|
68 |
thumbnail = "examples/SavtaDepth.png"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
def sepia(input_img):
|
71 |
+
|
72 |
+
return PILImageBW.create((learner.predict(input_img))[0]).convert('L')
|
73 |
|
74 |
|
75 |
def main():
|
76 |
+
iface = gr.Interface(sepia, gr.inputs.Image(shape=(640,480),type='numpy'), "image", title = title, description = description, article = article, examples = examples,theme ="peach",thumbnail=thumbnail)
|
77 |
|
78 |
+
iface.launch(favicon_path=favicon,server_name="0.0.0.0",server_port=8080)
|
79 |
# enable_queue=True,auth=("admin", "pass1234")
|
80 |
|
81 |
if __name__ == '__main__':
|
requirements.txt
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-f https://download.pytorch.org/whl/cpu/torch_stable.html
|
2 |
#dvc
|
3 |
-
|
4 |
torch==1.10.2+cpu
|
5 |
-
h5py
|
6 |
opencv-python-headless
|
7 |
tqdm
|
8 |
-
numpy
|
9 |
#scikit-learn
|
10 |
#dagshub
|
11 |
#tables
|
|
|
1 |
-f https://download.pytorch.org/whl/cpu/torch_stable.html
|
2 |
#dvc
|
3 |
+
fastai
|
4 |
torch==1.10.2+cpu
|
5 |
+
#h5py
|
6 |
opencv-python-headless
|
7 |
tqdm
|
8 |
+
#numpy
|
9 |
#scikit-learn
|
10 |
#dagshub
|
11 |
#tables
|