savtadepth / app /app_savta.py
Abid
working on the app
e706d2b
raw
history blame
1.49 kB
import numpy as np
import torch
import sys
from fastai.vision.all import *
import gradio as gr
title = "SavtaDepth WebApp"
description = "Savta Depth is a collaborative Open Source Data Science project for monocular depth estimation - Turn 2d photos into 3d photos. To test the model and code please check out the link bellow."
article = "<p style='text-align: center'><a href='https://dagshub.com/OperationSavta/SavtaDepth' target='_blank'>SavtaDepth Project from OperationSavta</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1XU4DgQ217_hUMU1dllppeQNw3pTRlHy1?usp=sharing' target='_blank'>Google Colab Demo</a></p></center></p>"
examples = [
["examples/00008.jpg"],
["examples/00045.jpg"],
]
favicon = "examples/favicon.ico"
thumbnail = "examples/SavtaDepth.png"
learner = unet_learner(resnet34, path='src/')
learner.load('model')
def sepia(input_img):
sepia_filter = np.array(
[[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]
)
sepia_img = input_img.dot(sepia_filter.T)
sepia_img /= sepia_img.max()
return sepia_img
def main():
iface = gr.Interface(sepia, gr.inputs.Image(shape=(640,480)), "image", title = title, description = description, article = article, examples = examples,theme ="peach",thumbnail=thumbnail)
iface.launch(favicon_path=favicon,auth=("admin", "dagshubsota123"),server_name="0.0.0.0")
# enable_queue=True,auth=("admin", "pass1234")
if __name__ == '__main__':
main()