savtadepth / src /code /training.py
Dean
Training stage seems to work, creating a non-run commit to use colab as an orchestration machine
0b86a0a
raw
history blame
916 Bytes
import torch
import sys
from fastai2.vision.all import *
from torchvision.utils import save_image
def get_y_fn(x):
y = str(x.absolute()).replace('.jpg', '_depth.png')
y = Path(y)
return y
def create_data(data_path):
fnames = get_files(data_path/'train', extensions='.jpg')
data = SegmentationDataLoaders.from_label_func(data_path/'train', bs=4, num_workers=0, fnames=fnames, label_func=get_y_fn)
return data
def train(data):
learner = unet_learner(data, resnet34, metrics=rmse, wd=1e-2, n_out=1, loss_func=MSELossFlat())
learner.fine_tune(1)
if __name__ == "__main__":
if len(sys.argv) < 3:
print("usage: %s <data_path> <out_folder>" % sys.argv[0], file=sys.stderr)
sys.exit(0)
data = create_data(Path(sys.argv[1]))
data.batch_size = 1
data.num_workers = 0
learner = train(data)
learner.save(sys.argv[2])
learner.show_results()