Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py β
|
| 2 |
|
| 3 |
import os
|
| 4 |
import json
|
|
@@ -63,14 +63,10 @@ def get_groq_client(api_key: Optional[str] = None):
|
|
| 63 |
from groq import Groq # type: ignore
|
| 64 |
return Groq(api_key=key), None
|
| 65 |
except Exception as e:
|
| 66 |
-
return None, f"Groq client
|
| 67 |
-
|
| 68 |
-
def enhance_text_with_llm(
|
| 69 |
-
|
| 70 |
-
api_key: Optional[str],
|
| 71 |
-
temperature: float = 0.2,
|
| 72 |
-
system_prompt: str = DEFAULT_SYSTEM_PROMPT_UR,
|
| 73 |
-
) -> str:
|
| 74 |
client, err = get_groq_client(api_key)
|
| 75 |
if not client:
|
| 76 |
if err:
|
|
@@ -90,25 +86,16 @@ def enhance_text_with_llm(
|
|
| 90 |
print(f"[LLM] Full-text enhance failed: {e}")
|
| 91 |
return basic_urdu_cleanup(text)
|
| 92 |
|
| 93 |
-
def enhance_lines_with_llm(
|
| 94 |
-
|
| 95 |
-
api_key: Optional[str],
|
| 96 |
-
temperature: float = 0.2,
|
| 97 |
-
system_prompt: str = DEFAULT_SYSTEM_PROMPT_UR,
|
| 98 |
-
) -> List[str]:
|
| 99 |
if not lines:
|
| 100 |
return lines
|
| 101 |
client, err = get_groq_client(api_key)
|
| 102 |
if not client:
|
| 103 |
-
if err:
|
| 104 |
-
print(f"[LLM] {err} (line mode fallback)")
|
| 105 |
return [basic_urdu_cleanup(x) for x in lines]
|
| 106 |
|
| 107 |
numbered = "\n".join(f"{i+1}. {ln}" for i, ln in enumerate(lines))
|
| 108 |
-
user_msg =
|
| 109 |
-
"Ψ§Ω Ψ¬Ω
ΩΩΪΊ Ϊ©Ϋ Ψ§Ψ±Ψ―Ω Ψ¨ΫΨͺΨ± Ϊ©Ψ±ΫΪΊΫ Ψ¨Ψ§ΩΪ©Ω Ψ§Ψ³Ϋ ΨͺΨ±ΨͺΫΨ¨ Ψ§ΩΨ± Ϊ―ΩΨͺΫ Ϊ©Ϋ Ψ³Ψ§ΨͺΪΎ Ψ§ΨͺΩΫ ΫΫ Ψ³Ψ·ΩΨ± ΩΨ§ΩΎΨ³ Ϊ©Ψ±ΫΪΊ:"
|
| 110 |
-
"\n\n" + numbered
|
| 111 |
-
)
|
| 112 |
try:
|
| 113 |
resp = client.chat.completions.create(
|
| 114 |
model=GROQ_MODEL,
|
|
@@ -125,8 +112,7 @@ def enhance_lines_with_llm(
|
|
| 125 |
if not s or "." not in s:
|
| 126 |
continue
|
| 127 |
num, rest = s.split(".", 1)
|
| 128 |
-
|
| 129 |
-
if num.isdigit():
|
| 130 |
improved_map[int(num) - 1] = rest.strip()
|
| 131 |
return [improved_map.get(i, basic_urdu_cleanup(lines[i])) for i in range(len(lines))]
|
| 132 |
except Exception as e:
|
|
@@ -147,9 +133,7 @@ def test_groq(api_key: Optional[str], temperature: float, system_prompt: str) ->
|
|
| 147 |
],
|
| 148 |
)
|
| 149 |
txt = (resp.choices[0].message.content or "").strip()
|
| 150 |
-
if txt
|
| 151 |
-
return f"β
LLM OK Β· Sample: {txt}"
|
| 152 |
-
return "β οΈ LLM responded but empty content."
|
| 153 |
except Exception as e:
|
| 154 |
return f"β LLM call failed: {e}"
|
| 155 |
|
|
@@ -158,12 +142,6 @@ def test_groq(api_key: Optional[str], temperature: float, system_prompt: str) ->
|
|
| 158 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 159 |
|
| 160 |
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 161 |
-
if torch.cuda.is_available():
|
| 162 |
-
try:
|
| 163 |
-
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 164 |
-
except Exception:
|
| 165 |
-
pass
|
| 166 |
-
|
| 167 |
print("Loading model... this may take a minute the first time.")
|
| 168 |
model = faster_whisper.WhisperModel(
|
| 169 |
MODEL_ID_CT2,
|
|
@@ -189,11 +167,8 @@ def transcribe_audio(
|
|
| 189 |
raise gr.Error("Please upload or record an audio clip.")
|
| 190 |
|
| 191 |
seg_iter, info = model.transcribe(
|
| 192 |
-
audio_path,
|
| 193 |
-
|
| 194 |
-
beam_size=int(beam_size),
|
| 195 |
-
word_timestamps=False,
|
| 196 |
-
vad_filter=False,
|
| 197 |
)
|
| 198 |
|
| 199 |
segments, raw_lines = [], []
|
|
@@ -202,148 +177,93 @@ def transcribe_audio(
|
|
| 202 |
segments.append({"start": seg.start, "end": seg.end, "text": text})
|
| 203 |
raw_lines.append(text)
|
| 204 |
|
| 205 |
-
# Enhance / clean
|
| 206 |
if llm_enhance:
|
| 207 |
if output_format == "text":
|
| 208 |
-
|
| 209 |
-
" ".join(raw_lines),
|
| 210 |
-
api_key=llm_api_key,
|
| 211 |
-
temperature=llm_temperature,
|
| 212 |
-
system_prompt=llm_system_prompt or DEFAULT_SYSTEM_PROMPT_UR,
|
| 213 |
-
)
|
| 214 |
-
cleaned_lines = [cleaned]
|
| 215 |
else:
|
| 216 |
-
cleaned_lines = enhance_lines_with_llm(
|
| 217 |
-
raw_lines,
|
| 218 |
-
api_key=llm_api_key,
|
| 219 |
-
temperature=llm_temperature,
|
| 220 |
-
system_prompt=llm_system_prompt or DEFAULT_SYSTEM_PROMPT_UR,
|
| 221 |
-
)
|
| 222 |
else:
|
| 223 |
cleaned_lines = (
|
| 224 |
[basic_urdu_cleanup(" ".join(raw_lines))] if output_format == "text"
|
| 225 |
else [basic_urdu_cleanup(x) for x in raw_lines]
|
| 226 |
)
|
| 227 |
|
| 228 |
-
# Render
|
| 229 |
if output_format == "text":
|
| 230 |
return cleaned_lines[0]
|
| 231 |
-
|
| 232 |
if output_format == "srt":
|
| 233 |
lines = []
|
| 234 |
for i, s in enumerate(segments, 1):
|
| 235 |
-
txt = cleaned_lines[i
|
| 236 |
-
lines += [
|
| 237 |
-
str(i),
|
| 238 |
-
f"{format_timestamp(s['start'], 'srt')} --> {format_timestamp(s['end'], 'srt')}",
|
| 239 |
-
txt,
|
| 240 |
-
"",
|
| 241 |
-
]
|
| 242 |
return "\n".join(lines)
|
| 243 |
-
|
| 244 |
if output_format == "vtt":
|
| 245 |
lines = ["WEBVTT", ""]
|
| 246 |
for i, s in enumerate(segments, 1):
|
| 247 |
-
txt = cleaned_lines[i
|
| 248 |
-
lines += [
|
| 249 |
-
f"{format_timestamp(s['start'], 'vtt')} --> {format_timestamp(s['end'], 'vtt')}",
|
| 250 |
-
txt,
|
| 251 |
-
"",
|
| 252 |
-
]
|
| 253 |
return "\n".join(lines)
|
| 254 |
-
|
| 255 |
if output_format == "json":
|
| 256 |
segs_out = []
|
| 257 |
for i, s in enumerate(segments):
|
| 258 |
txt = cleaned_lines[i] if len(cleaned_lines) == len(segments) else s["text"]
|
| 259 |
segs_out.append({"start": s["start"], "end": s["end"], "text": txt})
|
| 260 |
-
return json.dumps(
|
| 261 |
-
{
|
| 262 |
-
"text": cleaned_lines[0] if len(cleaned_lines) == 1 else " ".join(cleaned_lines),
|
| 263 |
-
"segments": segs_out,
|
| 264 |
-
"language": info.language,
|
| 265 |
-
"language_probability": info.language_probability,
|
| 266 |
-
"duration": info.duration,
|
| 267 |
-
"duration_after_vad": getattr(info, "duration_after_vad", None),
|
| 268 |
-
},
|
| 269 |
-
ensure_ascii=False,
|
| 270 |
-
indent=2,
|
| 271 |
-
)
|
| 272 |
|
| 273 |
raise gr.Error(f"Unsupported format: {output_format}")
|
| 274 |
|
| 275 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 276 |
-
# UI
|
| 277 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 278 |
|
| 279 |
theme = gr.themes.Soft(primary_hue="rose", secondary_hue="violet", neutral_hue="slate")
|
| 280 |
|
| 281 |
-
with gr.Blocks(
|
| 282 |
-
|
| 283 |
-
theme=theme,
|
| 284 |
-
) as iface:
|
| 285 |
-
# βββ add this block right after opening Blocks βββ
|
| 286 |
gr.HTML("""
|
| 287 |
<style>
|
| 288 |
-
/* Reduce the large bottom padding Gradio adds for the HF footer */
|
| 289 |
.gradio-container { padding-bottom: 16px !important; }
|
| 290 |
-
|
| 291 |
-
/* Tighten vertical gaps between blocks/rows */
|
| 292 |
-
.gradio-container .gr-row, .gradio-container .gradio-row,
|
| 293 |
-
.gradio-container .gr-block, .gradio-container .block {
|
| 294 |
-
margin-bottom: 8px !important;
|
| 295 |
-
}
|
| 296 |
-
|
| 297 |
-
/* Keep right-side output compact; scroll when long */
|
| 298 |
#result_box textarea {
|
| 299 |
min-height: 260px !important;
|
| 300 |
max-height: 360px !important;
|
| 301 |
overflow-y: auto !important;
|
| 302 |
}
|
| 303 |
-
|
| 304 |
-
/* Optional: trim footerβs own top spacing a bit */
|
| 305 |
-
footer { margin-top: 8px !important; padding-top: 4px !important; }
|
| 306 |
</style>
|
| 307 |
""")
|
| 308 |
|
| 309 |
gr.Markdown(
|
| 310 |
-
"## **Urdu STT with
|
| 311 |
"High-quality Urdu transcription with Faster-Whisper (CT2) and optional Groq LLM polishing."
|
| 312 |
)
|
| 313 |
|
| 314 |
with gr.Row():
|
| 315 |
with gr.Column(scale=5):
|
| 316 |
audio = gr.Audio(
|
| 317 |
-
sources=["upload",
|
| 318 |
-
type="filepath",
|
| 319 |
label="Upload or Record Audio",
|
| 320 |
waveform_options={"show_controls": False},
|
| 321 |
autoplay=False, streaming=False,
|
| 322 |
)
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
inputs=[llm_key, llm_temp, llm_sys],
|
| 345 |
-
outputs=[test_status],
|
| 346 |
-
)
|
| 347 |
|
| 348 |
if __name__ == "__main__":
|
| 349 |
iface.launch()
|
|
|
|
| 1 |
+
# app.py β Urdu ASR Studio with Faster-Whisper + optional LLM Polishing
|
| 2 |
|
| 3 |
import os
|
| 4 |
import json
|
|
|
|
| 63 |
from groq import Groq # type: ignore
|
| 64 |
return Groq(api_key=key), None
|
| 65 |
except Exception as e:
|
| 66 |
+
return None, f"Groq client init failed: {e}"
|
| 67 |
+
|
| 68 |
+
def enhance_text_with_llm(text: str, api_key: Optional[str], temperature: float = 0.2,
|
| 69 |
+
system_prompt: str = DEFAULT_SYSTEM_PROMPT_UR) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
client, err = get_groq_client(api_key)
|
| 71 |
if not client:
|
| 72 |
if err:
|
|
|
|
| 86 |
print(f"[LLM] Full-text enhance failed: {e}")
|
| 87 |
return basic_urdu_cleanup(text)
|
| 88 |
|
| 89 |
+
def enhance_lines_with_llm(lines: List[str], api_key: Optional[str], temperature: float = 0.2,
|
| 90 |
+
system_prompt: str = DEFAULT_SYSTEM_PROMPT_UR) -> List[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
if not lines:
|
| 92 |
return lines
|
| 93 |
client, err = get_groq_client(api_key)
|
| 94 |
if not client:
|
|
|
|
|
|
|
| 95 |
return [basic_urdu_cleanup(x) for x in lines]
|
| 96 |
|
| 97 |
numbered = "\n".join(f"{i+1}. {ln}" for i, ln in enumerate(lines))
|
| 98 |
+
user_msg = "Ψ§Ω Ψ¬Ω
ΩΩΪΊ Ϊ©Ϋ Ψ§Ψ±Ψ―Ω Ψ¨ΫΨͺΨ± Ϊ©Ψ±ΫΪΊΫ Ψ§Ψ³Ϋ ΨͺΨ±ΨͺΫΨ¨ Ψ§ΩΨ± Ϊ―ΩΨͺΫ Ϊ©Ϋ Ψ³Ψ§ΨͺΪΎ Ψ§ΨͺΩΫ ΫΫ Ψ³Ψ·ΩΨ± ΩΨ§ΩΎΨ³ Ϊ©Ψ±ΫΪΊ:\n\n" + numbered
|
|
|
|
|
|
|
|
|
|
| 99 |
try:
|
| 100 |
resp = client.chat.completions.create(
|
| 101 |
model=GROQ_MODEL,
|
|
|
|
| 112 |
if not s or "." not in s:
|
| 113 |
continue
|
| 114 |
num, rest = s.split(".", 1)
|
| 115 |
+
if num.strip().isdigit():
|
|
|
|
| 116 |
improved_map[int(num) - 1] = rest.strip()
|
| 117 |
return [improved_map.get(i, basic_urdu_cleanup(lines[i])) for i in range(len(lines))]
|
| 118 |
except Exception as e:
|
|
|
|
| 133 |
],
|
| 134 |
)
|
| 135 |
txt = (resp.choices[0].message.content or "").strip()
|
| 136 |
+
return f"β
LLM OK Β· Sample: {txt}" if txt else "β οΈ LLM responded but empty content."
|
|
|
|
|
|
|
| 137 |
except Exception as e:
|
| 138 |
return f"β LLM call failed: {e}"
|
| 139 |
|
|
|
|
| 142 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 143 |
|
| 144 |
print(f"CUDA available: {torch.cuda.is_available()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
print("Loading model... this may take a minute the first time.")
|
| 146 |
model = faster_whisper.WhisperModel(
|
| 147 |
MODEL_ID_CT2,
|
|
|
|
| 167 |
raise gr.Error("Please upload or record an audio clip.")
|
| 168 |
|
| 169 |
seg_iter, info = model.transcribe(
|
| 170 |
+
audio_path, language="ur", beam_size=int(beam_size),
|
| 171 |
+
word_timestamps=False, vad_filter=False
|
|
|
|
|
|
|
|
|
|
| 172 |
)
|
| 173 |
|
| 174 |
segments, raw_lines = [], []
|
|
|
|
| 177 |
segments.append({"start": seg.start, "end": seg.end, "text": text})
|
| 178 |
raw_lines.append(text)
|
| 179 |
|
|
|
|
| 180 |
if llm_enhance:
|
| 181 |
if output_format == "text":
|
| 182 |
+
cleaned_lines = [enhance_text_with_llm(" ".join(raw_lines), llm_api_key, llm_temperature, llm_system_prompt)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
else:
|
| 184 |
+
cleaned_lines = enhance_lines_with_llm(raw_lines, llm_api_key, llm_temperature, llm_system_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
else:
|
| 186 |
cleaned_lines = (
|
| 187 |
[basic_urdu_cleanup(" ".join(raw_lines))] if output_format == "text"
|
| 188 |
else [basic_urdu_cleanup(x) for x in raw_lines]
|
| 189 |
)
|
| 190 |
|
|
|
|
| 191 |
if output_format == "text":
|
| 192 |
return cleaned_lines[0]
|
|
|
|
| 193 |
if output_format == "srt":
|
| 194 |
lines = []
|
| 195 |
for i, s in enumerate(segments, 1):
|
| 196 |
+
txt = cleaned_lines[i-1] if len(cleaned_lines) == len(segments) else s["text"]
|
| 197 |
+
lines += [str(i), f"{format_timestamp(s['start'],'srt')} --> {format_timestamp(s['end'],'srt')}", txt, ""]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
return "\n".join(lines)
|
|
|
|
| 199 |
if output_format == "vtt":
|
| 200 |
lines = ["WEBVTT", ""]
|
| 201 |
for i, s in enumerate(segments, 1):
|
| 202 |
+
txt = cleaned_lines[i-1] if len(cleaned_lines) == len(segments) else s["text"]
|
| 203 |
+
lines += [f"{format_timestamp(s['start'],'vtt')} --> {format_timestamp(s['end'],'vtt')}", txt, ""]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
return "\n".join(lines)
|
|
|
|
| 205 |
if output_format == "json":
|
| 206 |
segs_out = []
|
| 207 |
for i, s in enumerate(segments):
|
| 208 |
txt = cleaned_lines[i] if len(cleaned_lines) == len(segments) else s["text"]
|
| 209 |
segs_out.append({"start": s["start"], "end": s["end"], "text": txt})
|
| 210 |
+
return json.dumps({"text": " ".join(cleaned_lines), "segments": segs_out}, ensure_ascii=False, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
raise gr.Error(f"Unsupported format: {output_format}")
|
| 213 |
|
| 214 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 215 |
+
# UI
|
| 216 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 217 |
|
| 218 |
theme = gr.themes.Soft(primary_hue="rose", secondary_hue="violet", neutral_hue="slate")
|
| 219 |
|
| 220 |
+
with gr.Blocks(title="Urdu ASR Studio β Faster-Whisper + LLM Polishing", theme=theme) as iface:
|
| 221 |
+
# Custom CSS to fix spacing + output height
|
|
|
|
|
|
|
|
|
|
| 222 |
gr.HTML("""
|
| 223 |
<style>
|
|
|
|
| 224 |
.gradio-container { padding-bottom: 16px !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
#result_box textarea {
|
| 226 |
min-height: 260px !important;
|
| 227 |
max-height: 360px !important;
|
| 228 |
overflow-y: auto !important;
|
| 229 |
}
|
|
|
|
|
|
|
|
|
|
| 230 |
</style>
|
| 231 |
""")
|
| 232 |
|
| 233 |
gr.Markdown(
|
| 234 |
+
"## **Urdu STT with LLM** \n"
|
| 235 |
"High-quality Urdu transcription with Faster-Whisper (CT2) and optional Groq LLM polishing."
|
| 236 |
)
|
| 237 |
|
| 238 |
with gr.Row():
|
| 239 |
with gr.Column(scale=5):
|
| 240 |
audio = gr.Audio(
|
| 241 |
+
sources=["upload","microphone"], type="filepath",
|
|
|
|
| 242 |
label="Upload or Record Audio",
|
| 243 |
waveform_options={"show_controls": False},
|
| 244 |
autoplay=False, streaming=False,
|
| 245 |
)
|
| 246 |
+
with gr.Accordion("Transcription Settings", open=False):
|
| 247 |
+
with gr.Row():
|
| 248 |
+
fmt = gr.Radio(choices=["text","srt","vtt","json"], value="text", label="Output Format")
|
| 249 |
+
beam = gr.Slider(1,10,5,step=1,label="Beam Size")
|
| 250 |
+
with gr.Accordion("LLM Polishing (Optional)", open=False):
|
| 251 |
+
llm_toggle = gr.Checkbox(value=False,label="Polish Urdu text with LLM (Groq Β· openai/gpt-oss-120b)")
|
| 252 |
+
with gr.Row():
|
| 253 |
+
llm_temp = gr.Slider(0.0,1.0,0.2,step=0.05,label="LLM Temperature")
|
| 254 |
+
llm_key = gr.Textbox(label="GROQ_API_KEY (optional if set in environment)", type="password", value="")
|
| 255 |
+
llm_sys = gr.Textbox(label="LLM System Prompt (Urdu)", value=DEFAULT_SYSTEM_PROMPT_UR, lines=3)
|
| 256 |
+
with gr.Row():
|
| 257 |
+
test_btn = gr.Button("Test LLM", variant="secondary")
|
| 258 |
+
test_status = gr.Markdown("")
|
| 259 |
+
with gr.Row():
|
| 260 |
+
btn = gr.Button("Transcribe", variant="primary")
|
| 261 |
|
| 262 |
+
with gr.Column(scale=7):
|
| 263 |
+
out = gr.Textbox(label="Result", lines=14, max_lines=30, show_copy_button=True, elem_id="result_box")
|
| 264 |
|
| 265 |
+
btn.click(fn=transcribe_audio, inputs=[audio, fmt, beam, llm_toggle, llm_key, llm_temp, llm_sys], outputs=out)
|
| 266 |
+
test_btn.click(fn=test_groq, inputs=[llm_key,llm_temp,llm_sys], outputs=[test_status])
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
if __name__ == "__main__":
|
| 269 |
iface.launch()
|