Loan_Classifier / app.py
kingabzpro's picture
scaled the features
aa6b40b
import gradio as gr
import joblib
# Load the trained model
model = joblib.load("loan_classifier.joblib")
# Load Standared Scaler
scalar = joblib.load("std_scaler.bin")
def predict_loan_status(
int_rate,
installment,
log_annual_inc,
dti,
fico,
revol_bal,
revol_util,
inq_last_6mths,
delinq_2yrs,
pub_rec,
installment_to_income_ratio,
credit_history,
):
input_dict = {
"int.rate": int_rate,
"installment": installment,
"log.annual.inc": log_annual_inc,
"dti": dti,
"fico": fico,
"revol.bal": revol_bal,
"revol.util": revol_util,
"inq.last.6mths": inq_last_6mths,
"delinq.2yrs": delinq_2yrs,
"pub.rec": pub_rec,
"installment_to_income_ratio": installment_to_income_ratio,
"credit_history": credit_history,
}
# Convert the dictionary to a 2D array
input_array = [list(input_dict.values())]
scaled_array = scalar.transform(input_array)
prediction = model.predict(scaled_array)[0]
if prediction == 0:
return "Loan fully paid"
else:
return "Loan not fully paid"
inputs = [
gr.Slider(0.06, 0.23, step=0.01, label="Interest Rate"),
gr.Slider(100, 950, step=10, label="Installment"),
gr.Slider(7, 15, step=0.1, label="Log Annual Income"),
gr.Slider(0, 40, step=1, label="DTI Ratio"),
gr.Slider(600, 850, step=1, label="FICO Score"),
gr.Slider(0, 120000, step=1000, label="Revolving Balance"),
gr.Slider(0, 120, step=1, label="Revolving Utilization"),
gr.Slider(0, 10, step=1, label="Inquiries in Last 6 Months"),
gr.Slider(0, 20, step=1, label="Delinquencies in Last 2 Years"),
gr.Slider(0, 10, step=1, label="Public Records"),
gr.Slider(0, 5, step=0.1, label="Installment to Income Ratio"),
gr.Slider(0, 1, step=0.01, label="Credit History"),
]
outputs = [gr.Label(num_top_classes=2)]
title = "Loan Approval Classifier"
description = (
"Enter the details of the loan applicant to check if the loan is approved or not."
)
gr.Interface(
fn=predict_loan_status,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
).launch()