Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from torch import nn | |
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM | |
from pathlib import Path | |
import torch | |
from PIL import Image | |
import os | |
import re | |
# ๊ฒฝ๋ก ๋ฐ ์ค์ | |
CLIP_PATH = "google/siglip-so400m-patch14-384" | |
VLM_PROMPT = "A descriptive caption for this image:\n" | |
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B" | |
CHECKPOINT_PATH = Path("wpkklhc6") | |
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>" | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# ์ด๋ฏธ์ง ์ด๋ํฐ ์ ์ | |
class ImageAdapter(nn.Module): | |
def __init__(self, input_features: int, output_features: int): | |
super().__init__() | |
self.linear1 = nn.Linear(input_features, output_features) | |
self.activation = nn.GELU() | |
self.linear2 = nn.Linear(output_features, output_features) | |
def forward(self, vision_outputs: torch.Tensor): | |
x = self.linear1(vision_outputs) | |
x = self.activation(x) | |
x = self.linear2(x) | |
return x | |
# CLIP ๋ชจ๋ธ ๋ก๋ | |
print("Loading CLIP") | |
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) | |
clip_model = AutoModel.from_pretrained(CLIP_PATH) | |
clip_model = clip_model.vision_model | |
clip_model.eval() | |
clip_model.requires_grad_(False) | |
clip_model.to("cuda") | |
# ํ ํฌ๋์ด์ ๋ก๋ | |
print("Loading tokenizer") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False) | |
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}" | |
# ์ธ์ด ๋ชจ๋ธ(LLM) ๋ก๋ | |
print("Loading LLM") | |
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16) | |
text_model.eval() | |
# ์ด๋ฏธ์ง ์ด๋ํฐ ๋ก๋ | |
print("Loading image adapter") | |
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) | |
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")) | |
image_adapter.eval() | |
image_adapter.to("cuda") | |
# ์ด๋ฏธ์ง ์ค๋ช ์์ฑ ํจ์ | |
def stream_chat(input_image: Image.Image): | |
torch.cuda.empty_cache() | |
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ | |
image = clip_processor(images=input_image, return_tensors='pt').pixel_values.to('cuda') | |
# ํ๋กฌํํธ ํ ํฌ๋์ด์ฆ | |
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', add_special_tokens=False).to('cuda') | |
# ์ด๋ฏธ์ง ์๋ฒ ๋ฉ | |
with torch.amp.autocast_mode.autocast('cuda', enabled=True): | |
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) | |
image_features = vision_outputs.hidden_states[-2] | |
embedded_images = image_adapter(image_features).to('cuda') | |
# ํ๋กฌํํธ ์๋ฒ ๋ฉ | |
prompt_embeds = text_model.model.embed_tokens(prompt) | |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device='cuda', dtype=torch.int64)) | |
# ํ๋กฌํํธ ๊ตฌ์ฑ | |
inputs_embeds = torch.cat([ | |
embedded_bos.expand(embedded_images.shape[0], -1, -1), | |
embedded_images, | |
prompt_embeds | |
], dim=1) | |
# CPU์ ์๋ ํ ์๋ฅผ GPU๋ก ์ด๋ | |
input_ids = torch.cat([ | |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to('cuda'), | |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long).to('cuda'), | |
prompt.to('cuda') | |
], dim=1) | |
attention_mask = torch.ones_like(input_ids) | |
# ํ ์คํธ ์์ฑ | |
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5) | |
generate_ids = generate_ids[:, input_ids.shape[1]:] | |
if generate_ids[0][-1] == tokenizer.eos_token_id: | |
generate_ids = generate_ids[:, :-1] | |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] | |
return caption.strip() | |
# ํ๊ธ ์ต์ ์ ์์ด๋ก ๋ณํํ๋ ์ฌ์ | |
translation_dict = { | |
"ํ๊ตญ ๋จ์": "Korean man", | |
"ํ๊ตญ ์ฌ์": "Korean woman", | |
"์ญ๋ฐ": "shaved", | |
"์์ปท": "short cut", | |
"๋ฏธ๋์": "medium", | |
"๋กฑํค์ด": "long hair", | |
"๋ ์ด์ด๋": "layered", | |
"๋ฐฅ": "bob", | |
"ํ": "perm", | |
"์ ์คํ์ผ": "upstyle", | |
"ํฌ๋ํ ์ผ": "ponytail", | |
"๋ธ๋ ์ด๋": "braid", | |
"์ปฌ": "curl", | |
"์จ์ด๋ธ": "wave", | |
"๋ธ๋": "black", | |
"๋ธ๋ผ์ด": "brown", | |
"๋ธ๋ก ๋": "blonde", | |
"๋ ๋": "red", | |
"์ ์ฌ": "ash", | |
"ํผํ": "purple", | |
"ํํฌ": "pink", | |
"๋ธ๋ฃจ": "blue", | |
"๊ทธ๋ฆฐ": "green", | |
"์ค๋ ์ง": "orange", | |
"ํ์ดํธ": "white", | |
"ํค์ด๋ฐด๋": "headband", | |
"๋จธ๋ฆฌํ": "hairpin", | |
"๋ฆฌ๋ณธ": "ribbon", | |
"์คํฌ๋ฐ์น": "scrunchie", | |
"ํค์ดํด๋ฆฝ": "hairclip", | |
"ํฐ์๋ผ": "tiara", | |
"๊ฝ์ฅ์": "flower decoration", | |
} | |
# ์ฑ๋ณ์ ๋ฐ๋ฅธ ๋จ์ด ์นํ | |
def translate(option): | |
return translation_dict.get(option, option) | |
def replace_gender_specific_words(caption, gender_prefix): | |
if gender_prefix == "Korean man": | |
caption = re.sub(r'\bwoman\b', "man", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bgirl\b', "boy", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\blady\b', "gentleman", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bshe\b', "he", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bher\b', "his", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bherself\b', "himself", caption, flags=re.IGNORECASE) | |
elif gender_prefix == "Korean woman": | |
caption = re.sub(r'\bman\b', "woman", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bboy\b', "girl", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bgentleman\b', "lady", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bhe\b', "she", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bhis\b', "her", caption, flags=re.IGNORECASE) | |
caption = re.sub(r'\bhimself\b', "herself", caption, flags=re.IGNORECASE) | |
return caption | |
def replace_gender_words(caption, gender, age, hair_length, hair_style, hair_color, hair_accessory): | |
gender_prefix = translate(gender) | |
hair_length_en = translate(hair_length) | |
hair_style_en = translate(hair_style) | |
hair_color_en = translate(hair_color) | |
hair_accessory_en = translate(hair_accessory) | |
hair_description = f"{hair_length_en} hair with {hair_style_en}, {hair_color_en} color" | |
if hair_accessory_en: | |
hair_description += f", wearing a {hair_accessory_en}" | |
caption = replace_gender_specific_words(caption, gender_prefix) | |
return f"{gender_prefix}, age {age}, {hair_description}: {caption}" | |
# Recaption ํจ์ | |
def recaption(input_image: Image.Image, prefix: str, age: int, hair_length: str, hair_style: str, hair_color: str, hair_accessory: str): | |
original_caption = stream_chat(input_image) | |
updated_caption = replace_gender_words(original_caption, prefix, age, hair_length, hair_style, hair_color, hair_accessory) | |
return updated_caption | |
# Gradio ์ธํฐํ์ด์ค | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
run_button = gr.Button("Caption") | |
recaption_button = gr.Button("Recaption") | |
gender_selection = gr.Radio(choices=["ํ๊ตญ ๋จ์", "ํ๊ตญ ์ฌ์"], label="์ฑ๋ณ ์ ํ") | |
age_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Age", value=25) | |
hair_length = gr.Radio(choices=["์ญ๋ฐ", "์์ปท", "๋ฏธ๋์", "๋กฑํค์ด", "๋ ์ด์ด๋", "๋ฐฅ"], label="ํค์ด ๊ธธ์ด") | |
hair_style = gr.Radio(choices=["ํ", "์ ์คํ์ผ", "ํฌ๋ํ ์ผ", "๋ธ๋ ์ด๋", "์ปฌ", "์จ์ด๋ธ"], label="ํค์ด ์คํ์ผ") | |
hair_color = gr.Radio(choices=["๋ธ๋", "๋ธ๋ผ์ด", "๋ธ๋ก ๋", "๋ ๋", "์ ์ฌ", "ํผํ", "ํํฌ", "๋ธ๋ฃจ", "๊ทธ๋ฆฐ", "์ค๋ ์ง", "ํ์ดํธ"], label="ํค์ด ์์") | |
hair_accessory = gr.Radio(choices=["ํค์ด๋ฐด๋", "๋จธ๋ฆฌํ", "๋ฆฌ๋ณธ", "์คํฌ๋ฐ์น", "ํค์ดํด๋ฆฝ", "ํฐ์๋ผ", "๊ฝ์ฅ์"], label="ํค์ด ์ก์ธ์๋ฆฌ") | |
with gr.Column(): | |
output_caption = gr.Textbox(label="Caption") | |
new_caption_output = gr.Textbox(label="Recaptioned Caption", placeholder="New caption will appear here") | |
run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption]) | |
recaption_button.click(fn=recaption, inputs=[input_image, gender_selection, age_slider, hair_length, hair_style, hair_color, hair_accessory], outputs=[new_caption_output]) | |
if __name__ == "__main__": | |
demo.launch() | |