Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Read the contents of setup.py
|
| 2 |
with open("setup.py", "r") as file:
|
| 3 |
setup_content = file.read()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from threading import Thread
|
| 4 |
+
from typing import Iterator
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import spaces
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 10 |
+
|
| 11 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 12 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 13 |
+
total_count=0
|
| 14 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 15 |
+
|
| 16 |
+
if not torch.cuda.is_available():
|
| 17 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
if torch.cuda.is_available():
|
| 21 |
+
model_id = "khulnasoft/gpt-computer-agent"
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 24 |
+
tokenizer.use_default_system_prompt = False
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@spaces.GPU
|
| 28 |
+
def generate(
|
| 29 |
+
message: str,
|
| 30 |
+
chat_history: list[tuple[str, str]],
|
| 31 |
+
system_prompt: str,
|
| 32 |
+
max_new_tokens: int = 1024,
|
| 33 |
+
temperature: float = 0.6,
|
| 34 |
+
top_p: float = 0.9,
|
| 35 |
+
top_k: int = 50,
|
| 36 |
+
repetition_penalty: float = 1,
|
| 37 |
+
) -> Iterator[str]:
|
| 38 |
+
global total_count
|
| 39 |
+
total_count += 1
|
| 40 |
+
print(total_count)
|
| 41 |
+
os.system("nvidia-smi")
|
| 42 |
+
conversation = []
|
| 43 |
+
if system_prompt:
|
| 44 |
+
conversation.append({"role": "system", "content": system_prompt})
|
| 45 |
+
for user, assistant in chat_history:
|
| 46 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
| 47 |
+
conversation.append({"role": "user", "content": message})
|
| 48 |
+
|
| 49 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
| 50 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 51 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 52 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 53 |
+
input_ids = input_ids.to(model.device)
|
| 54 |
+
|
| 55 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 56 |
+
generate_kwargs = dict(
|
| 57 |
+
{"input_ids": input_ids},
|
| 58 |
+
streamer=streamer,
|
| 59 |
+
max_new_tokens=max_new_tokens,
|
| 60 |
+
do_sample=False,
|
| 61 |
+
top_p=top_p,
|
| 62 |
+
top_k=top_k,
|
| 63 |
+
num_beams=1,
|
| 64 |
+
# temperature=temperature,
|
| 65 |
+
repetition_penalty=repetition_penalty,
|
| 66 |
+
eos_token_id=32021
|
| 67 |
+
)
|
| 68 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 69 |
+
t.start()
|
| 70 |
+
|
| 71 |
+
outputs = []
|
| 72 |
+
for text in streamer:
|
| 73 |
+
outputs.append(text)
|
| 74 |
+
yield "".join(outputs).replace("<|EOT|>","")
|
| 75 |
+
|
| 76 |
+
|
| 77 |
# Read the contents of setup.py
|
| 78 |
with open("setup.py", "r") as file:
|
| 79 |
setup_content = file.read()
|