Spaces:
Running
Running
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from munch import Munch | |
import json | |
class AttrDict(dict): | |
def __init__(self, *args, **kwargs): | |
super(AttrDict, self).__init__(*args, **kwargs) | |
self.__dict__ = self | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
def convert_pad_shape(pad_shape): | |
l = pad_shape[::-1] | |
pad_shape = [item for sublist in l for item in sublist] | |
return pad_shape | |
def intersperse(lst, item): | |
result = [item] * (len(lst) * 2 + 1) | |
result[1::2] = lst | |
return result | |
def kl_divergence(m_p, logs_p, m_q, logs_q): | |
"""KL(P||Q)""" | |
kl = (logs_q - logs_p) - 0.5 | |
kl += ( | |
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) | |
) | |
return kl | |
def rand_gumbel(shape): | |
"""Sample from the Gumbel distribution, protect from overflows.""" | |
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 | |
return -torch.log(-torch.log(uniform_samples)) | |
def rand_gumbel_like(x): | |
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) | |
return g | |
def slice_segments(x, ids_str, segment_size=4): | |
ret = torch.zeros_like(x[:, :, :segment_size]) | |
for i in range(x.size(0)): | |
idx_str = ids_str[i] | |
idx_end = idx_str + segment_size | |
ret[i] = x[i, :, idx_str:idx_end] | |
return ret | |
def slice_segments_audio(x, ids_str, segment_size=4): | |
ret = torch.zeros_like(x[:, :segment_size]) | |
for i in range(x.size(0)): | |
idx_str = ids_str[i] | |
idx_end = idx_str + segment_size | |
ret[i] = x[i, idx_str:idx_end] | |
return ret | |
def rand_slice_segments(x, x_lengths=None, segment_size=4): | |
b, d, t = x.size() | |
if x_lengths is None: | |
x_lengths = t | |
ids_str_max = x_lengths - segment_size + 1 | |
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to( | |
dtype=torch.long | |
) | |
ret = slice_segments(x, ids_str, segment_size) | |
return ret, ids_str | |
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): | |
position = torch.arange(length, dtype=torch.float) | |
num_timescales = channels // 2 | |
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( | |
num_timescales - 1 | |
) | |
inv_timescales = min_timescale * torch.exp( | |
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment | |
) | |
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) | |
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) | |
signal = F.pad(signal, [0, 0, 0, channels % 2]) | |
signal = signal.view(1, channels, length) | |
return signal | |
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): | |
b, channels, length = x.size() | |
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) | |
return x + signal.to(dtype=x.dtype, device=x.device) | |
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): | |
b, channels, length = x.size() | |
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) | |
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) | |
def subsequent_mask(length): | |
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) | |
return mask | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
def convert_pad_shape(pad_shape): | |
l = pad_shape[::-1] | |
pad_shape = [item for sublist in l for item in sublist] | |
return pad_shape | |
def shift_1d(x): | |
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] | |
return x | |
def sequence_mask(length, max_length=None): | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
def avg_with_mask(x, mask): | |
assert mask.dtype == torch.float, "Mask should be float" | |
if mask.ndim == 2: | |
mask = mask.unsqueeze(1) | |
if mask.shape[1] == 1: | |
mask = mask.expand_as(x) | |
return (x * mask).sum() / mask.sum() | |
def generate_path(duration, mask): | |
""" | |
duration: [b, 1, t_x] | |
mask: [b, 1, t_y, t_x] | |
""" | |
device = duration.device | |
b, _, t_y, t_x = mask.shape | |
cum_duration = torch.cumsum(duration, -1) | |
cum_duration_flat = cum_duration.view(b * t_x) | |
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | |
path = path.view(b, t_x, t_y) | |
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] | |
path = path.unsqueeze(1).transpose(2, 3) * mask | |
return path | |
def clip_grad_value_(parameters, clip_value, norm_type=2): | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
norm_type = float(norm_type) | |
if clip_value is not None: | |
clip_value = float(clip_value) | |
total_norm = 0 | |
for p in parameters: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm.item() ** norm_type | |
if clip_value is not None: | |
p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
total_norm = total_norm ** (1.0 / norm_type) | |
return total_norm | |
def log_norm(x, mean=-4, std=4, dim=2): | |
""" | |
normalized log mel -> mel -> norm -> log(norm) | |
""" | |
x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) | |
return x | |
def load_F0_models(path): | |
# load F0 model | |
from .JDC.model import JDCNet | |
F0_model = JDCNet(num_class=1, seq_len=192) | |
params = torch.load(path, map_location="cpu")["net"] | |
F0_model.load_state_dict(params) | |
_ = F0_model.train() | |
return F0_model | |
def modify_w2v_forward(self, output_layer=15): | |
""" | |
change forward method of w2v encoder to get its intermediate layer output | |
:param self: | |
:param layer: | |
:return: | |
""" | |
from transformers.modeling_outputs import BaseModelOutput | |
def forward( | |
hidden_states, | |
attention_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
conv_attention_mask = attention_mask | |
if attention_mask is not None: | |
# make sure padded tokens output 0 | |
hidden_states = hidden_states.masked_fill( | |
~attention_mask.bool().unsqueeze(-1), 0.0 | |
) | |
# extend attention_mask | |
attention_mask = 1.0 - attention_mask[:, None, None, :].to( | |
dtype=hidden_states.dtype | |
) | |
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min | |
attention_mask = attention_mask.expand( | |
attention_mask.shape[0], | |
1, | |
attention_mask.shape[-1], | |
attention_mask.shape[-1], | |
) | |
hidden_states = self.dropout(hidden_states) | |
if self.embed_positions is not None: | |
relative_position_embeddings = self.embed_positions(hidden_states) | |
else: | |
relative_position_embeddings = None | |
deepspeed_zero3_is_enabled = False | |
for i, layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = torch.rand([]) | |
skip_the_layer = ( | |
True | |
if self.training and (dropout_probability < self.config.layerdrop) | |
else False | |
) | |
if not skip_the_layer or deepspeed_zero3_is_enabled: | |
# under deepspeed zero3 all gpus must run in sync | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer.__call__, | |
hidden_states, | |
attention_mask, | |
relative_position_embeddings, | |
output_attentions, | |
conv_attention_mask, | |
) | |
else: | |
layer_outputs = layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
relative_position_embeddings=relative_position_embeddings, | |
output_attentions=output_attentions, | |
conv_attention_mask=conv_attention_mask, | |
) | |
hidden_states = layer_outputs[0] | |
if skip_the_layer: | |
layer_outputs = (None, None) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if i == output_layer - 1: | |
break | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, all_hidden_states, all_self_attentions] | |
if v is not None | |
) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
return forward | |
MATPLOTLIB_FLAG = False | |
def plot_spectrogram_to_numpy(spectrogram): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
import matplotlib | |
import logging | |
matplotlib.use("Agg") | |
MATPLOTLIB_FLAG = True | |
mpl_logger = logging.getLogger("matplotlib") | |
mpl_logger.setLevel(logging.WARNING) | |
import matplotlib.pylab as plt | |
import numpy as np | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close() | |
return data | |
def normalize_f0(f0_sequence): | |
# Remove unvoiced frames (replace with -1) | |
voiced_indices = np.where(f0_sequence > 0)[0] | |
f0_voiced = f0_sequence[voiced_indices] | |
# Convert to log scale | |
log_f0 = np.log2(f0_voiced) | |
# Calculate mean and standard deviation | |
mean_f0 = np.mean(log_f0) | |
std_f0 = np.std(log_f0) | |
# Normalize the F0 sequence | |
normalized_f0 = (log_f0 - mean_f0) / std_f0 | |
# Create the normalized F0 sequence with unvoiced frames | |
normalized_sequence = np.zeros_like(f0_sequence) | |
normalized_sequence[voiced_indices] = normalized_f0 | |
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames | |
return normalized_sequence | |
def build_model(args, stage="DiT"): | |
if stage == "DiT": | |
from modules.flow_matching import CFM | |
from modules.length_regulator import InterpolateRegulator | |
length_regulator = InterpolateRegulator( | |
channels=args.length_regulator.channels, | |
sampling_ratios=args.length_regulator.sampling_ratios, | |
is_discrete=args.length_regulator.is_discrete, | |
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None, | |
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False, | |
codebook_size=args.length_regulator.content_codebook_size, | |
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1, | |
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0, | |
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False, | |
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512, | |
) | |
cfm = CFM(args) | |
nets = Munch( | |
cfm=cfm, | |
length_regulator=length_regulator, | |
) | |
elif stage == 'codec': | |
from dac.model.dac import Encoder | |
from modules.quantize import ( | |
FAquantizer, | |
) | |
encoder = Encoder( | |
d_model=args.DAC.encoder_dim, | |
strides=args.DAC.encoder_rates, | |
d_latent=1024, | |
causal=args.causal, | |
lstm=args.lstm, | |
) | |
quantizer = FAquantizer( | |
in_dim=1024, | |
n_p_codebooks=1, | |
n_c_codebooks=args.n_c_codebooks, | |
n_t_codebooks=2, | |
n_r_codebooks=3, | |
codebook_size=1024, | |
codebook_dim=8, | |
quantizer_dropout=0.5, | |
causal=args.causal, | |
separate_prosody_encoder=args.separate_prosody_encoder, | |
timbre_norm=args.timbre_norm, | |
) | |
nets = Munch( | |
encoder=encoder, | |
quantizer=quantizer, | |
) | |
else: | |
raise ValueError(f"Unknown stage: {stage}") | |
return nets | |
def load_checkpoint( | |
model, | |
optimizer, | |
path, | |
load_only_params=True, | |
ignore_modules=[], | |
is_distributed=False, | |
): | |
state = torch.load(path, map_location="cpu") | |
params = state["net"] | |
for key in model: | |
if key in params and key not in ignore_modules: | |
if not is_distributed: | |
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix | |
for k in list(params[key].keys()): | |
if k.startswith("module."): | |
params[key][k[len("module.") :]] = params[key][k] | |
del params[key][k] | |
model_state_dict = model[key].state_dict() | |
# 过滤出形状匹配的键值对 | |
filtered_state_dict = { | |
k: v | |
for k, v in params[key].items() | |
if k in model_state_dict and v.shape == model_state_dict[k].shape | |
} | |
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys()) | |
if skipped_keys: | |
print( | |
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}" | |
) | |
print("%s loaded" % key) | |
model[key].load_state_dict(filtered_state_dict, strict=False) | |
_ = [model[key].eval() for key in model] | |
if not load_only_params: | |
epoch = state["epoch"] + 1 | |
iters = state["iters"] | |
optimizer.load_state_dict(state["optimizer"]) | |
optimizer.load_scheduler_state_dict(state["scheduler"]) | |
else: | |
epoch = 0 | |
iters = 0 | |
return model, optimizer, epoch, iters | |
def recursive_munch(d): | |
if isinstance(d, dict): | |
return Munch((k, recursive_munch(v)) for k, v in d.items()) | |
elif isinstance(d, list): | |
return [recursive_munch(v) for v in d] | |
else: | |
return d | |