Seed-VC / modules /commons.py
Plachta's picture
Update modules/commons.py
a1e9282 verified
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from munch import Munch
import json
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def kl_divergence(m_p, logs_p, m_q, logs_q):
"""KL(P||Q)"""
kl = (logs_q - logs_p) - 0.5
kl += (
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
)
return kl
def rand_gumbel(shape):
"""Sample from the Gumbel distribution, protect from overflows."""
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
return -torch.log(-torch.log(uniform_samples))
def rand_gumbel_like(x):
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
return g
def slice_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
def slice_segments_audio(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, idx_str:idx_end]
return ret
def rand_slice_segments(x, x_lengths=None, segment_size=4):
b, d, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
dtype=torch.long
)
ret = slice_segments(x, ids_str, segment_size)
return ret, ids_str
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
position = torch.arange(length, dtype=torch.float)
num_timescales = channels // 2
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
num_timescales - 1
)
inv_timescales = min_timescale * torch.exp(
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
)
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
signal = F.pad(signal, [0, 0, 0, channels % 2])
signal = signal.view(1, channels, length)
return signal
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return x + signal.to(dtype=x.dtype, device=x.device)
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
def subsequent_mask(length):
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
return mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def shift_1d(x):
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
return x
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def avg_with_mask(x, mask):
assert mask.dtype == torch.float, "Mask should be float"
if mask.ndim == 2:
mask = mask.unsqueeze(1)
if mask.shape[1] == 1:
mask = mask.expand_as(x)
return (x * mask).sum() / mask.sum()
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
device = duration.device
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path.unsqueeze(1).transpose(2, 3) * mask
return path
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1.0 / norm_type)
return total_norm
def log_norm(x, mean=-4, std=4, dim=2):
"""
normalized log mel -> mel -> norm -> log(norm)
"""
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
return x
def load_F0_models(path):
# load F0 model
from .JDC.model import JDCNet
F0_model = JDCNet(num_class=1, seq_len=192)
params = torch.load(path, map_location="cpu")["net"]
F0_model.load_state_dict(params)
_ = F0_model.train()
return F0_model
def modify_w2v_forward(self, output_layer=15):
"""
change forward method of w2v encoder to get its intermediate layer output
:param self:
:param layer:
:return:
"""
from transformers.modeling_outputs import BaseModelOutput
def forward(
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
conv_attention_mask = attention_mask
if attention_mask is not None:
# make sure padded tokens output 0
hidden_states = hidden_states.masked_fill(
~attention_mask.bool().unsqueeze(-1), 0.0
)
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
dtype=hidden_states.dtype
)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0],
1,
attention_mask.shape[-1],
attention_mask.shape[-1],
)
hidden_states = self.dropout(hidden_states)
if self.embed_positions is not None:
relative_position_embeddings = self.embed_positions(hidden_states)
else:
relative_position_embeddings = None
deepspeed_zero3_is_enabled = False
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = (
True
if self.training and (dropout_probability < self.config.layerdrop)
else False
)
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
relative_position_embeddings,
output_attentions,
conv_attention_mask,
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
conv_attention_mask=conv_attention_mask,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if i == output_layer - 1:
break
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
return forward
MATPLOTLIB_FLAG = False
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
import logging
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger("matplotlib")
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def normalize_f0(f0_sequence):
# Remove unvoiced frames (replace with -1)
voiced_indices = np.where(f0_sequence > 0)[0]
f0_voiced = f0_sequence[voiced_indices]
# Convert to log scale
log_f0 = np.log2(f0_voiced)
# Calculate mean and standard deviation
mean_f0 = np.mean(log_f0)
std_f0 = np.std(log_f0)
# Normalize the F0 sequence
normalized_f0 = (log_f0 - mean_f0) / std_f0
# Create the normalized F0 sequence with unvoiced frames
normalized_sequence = np.zeros_like(f0_sequence)
normalized_sequence[voiced_indices] = normalized_f0
normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames
return normalized_sequence
def build_model(args, stage="DiT"):
if stage == "DiT":
from modules.flow_matching import CFM
from modules.length_regulator import InterpolateRegulator
length_regulator = InterpolateRegulator(
channels=args.length_regulator.channels,
sampling_ratios=args.length_regulator.sampling_ratios,
is_discrete=args.length_regulator.is_discrete,
in_channels=args.length_regulator.in_channels if hasattr(args.length_regulator, "in_channels") else None,
vector_quantize=args.length_regulator.vector_quantize if hasattr(args.length_regulator, "vector_quantize") else False,
codebook_size=args.length_regulator.content_codebook_size,
n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1,
quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0,
f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False,
n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512,
)
cfm = CFM(args)
nets = Munch(
cfm=cfm,
length_regulator=length_regulator,
)
elif stage == 'codec':
from dac.model.dac import Encoder
from modules.quantize import (
FAquantizer,
)
encoder = Encoder(
d_model=args.DAC.encoder_dim,
strides=args.DAC.encoder_rates,
d_latent=1024,
causal=args.causal,
lstm=args.lstm,
)
quantizer = FAquantizer(
in_dim=1024,
n_p_codebooks=1,
n_c_codebooks=args.n_c_codebooks,
n_t_codebooks=2,
n_r_codebooks=3,
codebook_size=1024,
codebook_dim=8,
quantizer_dropout=0.5,
causal=args.causal,
separate_prosody_encoder=args.separate_prosody_encoder,
timbre_norm=args.timbre_norm,
)
nets = Munch(
encoder=encoder,
quantizer=quantizer,
)
else:
raise ValueError(f"Unknown stage: {stage}")
return nets
def load_checkpoint(
model,
optimizer,
path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
):
state = torch.load(path, map_location="cpu")
params = state["net"]
for key in model:
if key in params and key not in ignore_modules:
if not is_distributed:
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
for k in list(params[key].keys()):
if k.startswith("module."):
params[key][k[len("module.") :]] = params[key][k]
del params[key][k]
model_state_dict = model[key].state_dict()
# 过滤出形状匹配的键值对
filtered_state_dict = {
k: v
for k, v in params[key].items()
if k in model_state_dict and v.shape == model_state_dict[k].shape
}
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
if skipped_keys:
print(
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
)
print("%s loaded" % key)
model[key].load_state_dict(filtered_state_dict, strict=False)
_ = [model[key].eval() for key in model]
if not load_only_params:
epoch = state["epoch"] + 1
iters = state["iters"]
optimizer.load_state_dict(state["optimizer"])
optimizer.load_scheduler_state_dict(state["scheduler"])
else:
epoch = 0
iters = 0
return model, optimizer, epoch, iters
def recursive_munch(d):
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d