qnguyen3 commited on
Commit
b699eb0
·
verified ·
1 Parent(s): eeeeb1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -4
app.py CHANGED
@@ -22,8 +22,6 @@ model = LlavaQwen2ForCausalLM.from_pretrained(
22
  torch_dtype=torch.float16,
23
  trust_remote_code=True)
24
 
25
- model.to("cuda:0")
26
-
27
  class KeywordsStoppingCriteria(StoppingCriteria):
28
  def __init__(self, keywords, tokenizer, input_ids):
29
  self.keywords = keywords
@@ -97,13 +95,13 @@ def bot_streaming(message, history):
97
  tokenize=False,
98
  add_generation_prompt=True)
99
  text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
100
- input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to("cuda:0")
101
  stop_str = '<|im_end|>'
102
  keywords = [stop_str]
103
  stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
104
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
105
 
106
- image_tensor = model.process_images([image], model.config).to("cuda:0")
107
  generation_kwargs = dict(input_ids=input_ids, images=image_tensor, streamer=streamer, max_new_tokens=100, stopping_criteria=[stopping_criteria])
108
  generated_text = ""
109
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
 
22
  torch_dtype=torch.float16,
23
  trust_remote_code=True)
24
 
 
 
25
  class KeywordsStoppingCriteria(StoppingCriteria):
26
  def __init__(self, keywords, tokenizer, input_ids):
27
  self.keywords = keywords
 
95
  tokenize=False,
96
  add_generation_prompt=True)
97
  text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
98
+ input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
99
  stop_str = '<|im_end|>'
100
  keywords = [stop_str]
101
  stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
102
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
103
 
104
+ image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
105
  generation_kwargs = dict(input_ids=input_ids, images=image_tensor, streamer=streamer, max_new_tokens=100, stopping_criteria=[stopping_criteria])
106
  generated_text = ""
107
  thread = Thread(target=model.generate, kwargs=generation_kwargs)