Vintern-4B-Demo / app.py
khang119966's picture
Update app.py
3ed4913 verified
raw
history blame
6.31 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from threading import Thread
import re
import time
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
torch.set_default_device('cuda')
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
model = AutoModel.from_pretrained(
"5CD-AI/Viet-InternVL2-1B",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Viet-InternVL2-1B", trust_remote_code=True, use_fast=False)
@spaces.GPU
def chat(message, history):
print(history)
print(message)
if len(history) == 0 or len(message["files"]) != 0:
test_image = message["files"][0]["path"]
else:
test_image = history[0][0][0]
pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens= 1024, do_sample=True, num_beams = 3, repetition_penalty=2.5)
if len(history) == 0:
question = '<image>\n'+message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
else:
conv_history = []
for chat_pair in history:
if chat_pair[1] is not None:
if len(conv_history) == 0 and len(message["files"]) == 0:
chat_pair[0] = '<image>\n' + chat_pair[0]
conv_history.append(tuple(chat_pair))
print(conv_history)
if len(message["files"]) != 0:
question = '<image>\n'+message["text"]
else:
question = message["text"]
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
buffer = ""
for new_text in response:
buffer += new_text
generated_text_without_prompt = buffer[:]
time.sleep(0.04)
yield generated_text_without_prompt
demo = gr.ChatInterface(
fn=chat,
chatbot=gr.Chatbot(height=500),
description="""Try [Vintern-1B](https://huggingface.co/5CD-AI/Viet-InternVL2-1B) in this demo. Vintern 1B is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. Vintern-1B consists of InternViT-300M-448px, an MLP projector, and Qwen2-0.5B-Instruct.""",
examples=[{"text": "Mô tả hình ảnh.", "files":["./demo_3.jpg"]}
{"text": "Trích xuất các thông tin từ ảnh.", "files":["./demo_1.jpg"]},
{"text": "Mô tả hình ảnh một cách chi tiết.", "files":["./demo_2.jpg"]}],
title="❄️ Vintern-1B ❄️",
multimodal=True,
)
demo.queue().launch()