Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,34 @@ label=gr.outputs.Label()
|
|
16 |
examples=["filibe-1-1.jpg",
|
17 |
"ohrid-3-1.jpg",
|
18 |
"varna-1-1.jpg"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
examples=["filibe-1-1.jpg",
|
17 |
"ohrid-3-1.jpg",
|
18 |
"varna-1-1.jpg"]
|
19 |
+
def gradcam(img_create, learn):
|
20 |
+
x,= first(dls_augmented.test_dl([img]))
|
21 |
+
hook_output = Hook()
|
22 |
+
hook = learn.model[0].register_forward_hook(hook_output.hook_func)
|
23 |
+
with torch.no_grad(): output = learn.model.eval()(x)
|
24 |
+
act = hook_output.stored[0]
|
25 |
+
hook.remove()
|
26 |
|
27 |
+
input_size=act.shape[0]
|
28 |
+
out_size=learn.model[1][-1].in_features
|
29 |
+
kernel_size=act.shape[1]
|
30 |
+
a=act
|
31 |
+
new_act=tensor(np.zeros((out_size,kernel_size,kernel_size)))
|
32 |
+
sum=tensor(np.zeros((1,kernel_size,kernel_size)))
|
33 |
+
for i in range(0,input_size,4):
|
34 |
+
sum=tensor(np.zeros((1,kernel_size,kernel_size)))
|
35 |
+
for j in range(i,i+4):
|
36 |
+
sum=sum+act[j,:,:]
|
37 |
+
new_act[int(i/4),:,:]=sum/4
|
38 |
+
cam_map = torch.einsum('ck,kij->cij', learn.model[1][-1].weight, new_act)
|
39 |
+
gcam=cam_map[1].detach().cpu()
|
40 |
+
x_dec = TensorImage(dls_augmented.train.decode((x,))[0][0])
|
41 |
+
_,ax = plt.subplots()
|
42 |
+
x_dec.show(ctx=ax)
|
43 |
+
ax.imshow(cam_map[1].detach().cpu(), alpha=0.6, extent=(0,128,128,0), interpolation='bilinear', cmap='magma');
|
44 |
+
return gcam
|
45 |
+
gcam=gradcam(learn_inf,learn)
|
46 |
+
demo = gr.Interface(sepia, gr.Image(shape=(200, 200)), "image")
|
47 |
+
|
48 |
+
demo=gr.Interface(fn=classify_img, inputs=image, outputs=label, examples=examples)
|
49 |
+
demo.launch(inline=False)
|