Spaces:
Runtime error
Runtime error
import torch | |
import streamlit as st | |
from transformers import BertTokenizer, BertForSequenceClassification | |
# Load the pre-trained model and tokenizer | |
model_path = "https://huggingface.co/jonaskoenig/topic_classification_04" # Replace with the path to your saved model | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
model = BertForSequenceClassification.from_pretrained(model_path) | |
# Set up Streamlit app | |
st.title("Topic Classification App") | |
# User input for text | |
user_input = st.text_area("Enter text for topic classification:", "") | |
# Function to make predictions | |
def predict_topic(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=1).item() | |
return predicted_class | |
# Make predictions and display result | |
if st.button("Predict"): | |
if user_input: | |
st.info("Making Prediction...") | |
prediction = predict_topic(user_input) | |
st.success(f"Predicted Topic: {prediction}") | |
else: | |
st.warning("Please enter some text for prediction.") | |