|
import torch
|
|
import numpy as np
|
|
from scipy.io.wavfile import write
|
|
import torchaudio
|
|
|
|
from audiosr.utilities.audio.audio_processing import griffin_lim
|
|
|
|
|
|
def pad_wav(waveform, segment_length):
|
|
waveform_length = waveform.shape[-1]
|
|
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
|
|
if segment_length is None or waveform_length == segment_length:
|
|
return waveform
|
|
elif waveform_length > segment_length:
|
|
return waveform[:segment_length]
|
|
elif waveform_length < segment_length:
|
|
temp_wav = np.zeros((1, segment_length))
|
|
temp_wav[:, :waveform_length] = waveform
|
|
return temp_wav
|
|
|
|
|
|
def normalize_wav(waveform):
|
|
waveform = waveform - np.mean(waveform)
|
|
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
|
|
return waveform * 0.5
|
|
|
|
|
|
def read_wav_file(filename, segment_length):
|
|
|
|
waveform, sr = torchaudio.load(filename)
|
|
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
|
waveform = waveform.numpy()[0, ...]
|
|
waveform = normalize_wav(waveform)
|
|
waveform = waveform[None, ...]
|
|
waveform = pad_wav(waveform, segment_length)
|
|
|
|
waveform = waveform / np.max(np.abs(waveform))
|
|
waveform = 0.5 * waveform
|
|
|
|
return waveform
|
|
|
|
|
|
def get_mel_from_wav(audio, _stft):
|
|
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
|
|
audio = torch.autograd.Variable(audio, requires_grad=False)
|
|
melspec, magnitudes, phases, energy = _stft.mel_spectrogram(audio)
|
|
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
|
|
magnitudes = torch.squeeze(magnitudes, 0).numpy().astype(np.float32)
|
|
energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
|
|
return melspec, magnitudes, energy
|
|
|
|
|
|
def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60):
|
|
mel = torch.stack([mel])
|
|
mel_decompress = _stft.spectral_de_normalize(mel)
|
|
mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
|
|
spec_from_mel_scaling = 1000
|
|
spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis)
|
|
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
|
|
spec_from_mel = spec_from_mel * spec_from_mel_scaling
|
|
|
|
audio = griffin_lim(
|
|
torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters
|
|
)
|
|
|
|
audio = audio.squeeze()
|
|
audio = audio.cpu().numpy()
|
|
audio_path = out_filename
|
|
write(audio_path, _stft.sampling_rate, audio)
|
|
|