|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn import Conv1d, ConvTranspose1d
|
|
from torch.nn.utils import weight_norm, remove_weight_norm
|
|
|
|
LRELU_SLOPE = 0.1
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
m.weight.data.normal_(mean, std)
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
class ResBlock(torch.nn.Module):
|
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
|
super(ResBlock, self).__init__()
|
|
self.h = h
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=get_padding(kernel_size, dilation[2]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
self.convs1.apply(init_weights)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
self.convs2.apply(init_weights)
|
|
|
|
def forward(self, x):
|
|
for c1, c2 in zip(self.convs1, self.convs2):
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c1(xt)
|
|
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
|
xt = c2(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_weight_norm(l)
|
|
for l in self.convs2:
|
|
remove_weight_norm(l)
|
|
|
|
|
|
class Generator(torch.nn.Module):
|
|
def __init__(self, h):
|
|
super(Generator, self).__init__()
|
|
self.h = h
|
|
self.num_kernels = len(h.resblock_kernel_sizes)
|
|
self.num_upsamples = len(h.upsample_rates)
|
|
self.conv_pre = weight_norm(
|
|
Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
|
|
)
|
|
resblock = ResBlock
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
|
self.ups.append(
|
|
weight_norm(
|
|
ConvTranspose1d(
|
|
h.upsample_initial_channel // (2**i),
|
|
h.upsample_initial_channel // (2 ** (i + 1)),
|
|
k,
|
|
u,
|
|
padding=(k - u) // 2,
|
|
)
|
|
)
|
|
)
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
|
for j, (k, d) in enumerate(
|
|
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
|
|
):
|
|
self.resblocks.append(resblock(h, ch, k, d))
|
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
|
self.ups.apply(init_weights)
|
|
self.conv_post.apply(init_weights)
|
|
|
|
def forward(self, x):
|
|
x = self.conv_pre(x)
|
|
for i in range(self.num_upsamples):
|
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
|
x = self.ups[i](x)
|
|
xs = None
|
|
for j in range(self.num_kernels):
|
|
if xs is None:
|
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
|
else:
|
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
|
x = xs / self.num_kernels
|
|
x = F.leaky_relu(x)
|
|
x = self.conv_post(x)
|
|
x = torch.tanh(x)
|
|
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
|
|
for l in self.ups:
|
|
remove_weight_norm(l)
|
|
for l in self.resblocks:
|
|
l.remove_weight_norm()
|
|
remove_weight_norm(self.conv_pre)
|
|
remove_weight_norm(self.conv_post)
|
|
|